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Abstract

Along this thesis various subjects are studied, from the lowest to the higher level of video
analysis.

We first present motion detection and object tracking that compose the low-level process-
ing part of our system. Motion detection aims at detecting moving areas, which correspond
to foreground, of an image. The result of motion detection is a foreground mask that is used
as input for the object tracking process. Tracking matches and identifies foreground regions
across frames.

Then, we analyze the behavior of the tracked objects, as the mid-level analysis. At each
frame, we detect the current state of action of each tracked object currently in the scene.

Finally, the system generates a semantic interpretation of these behaviors and we ana-
lyze high-level scenarios as the high-level part of our system. These two processes analyze
the serie of states of each object. The semantic interpretation generates sentences when state
changes occur. Scenario recognition detects three different scenarios by analyzing the tem-
poral constraints between the states.
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Résumé

Cette thèse est effectuée en collaboration entre le LaBRI (Laboratoire bordelais de recherche
en informatique) et MIRANE S.A.S., le leader français en Publicité sur Lieu de Vente (PLV)
Dynamique. Notre but est d’analyser des comportements humains dans un point de vente.

Le long de cette thèse, nous présentons un système d’analyse vidéo composé de plusieurs
procédés de divers niveaux. Nous présentons, dans un premier temps, l’analyse vidéo de
bas niveau composée de la détection de mouvement et du suivi d’objets.

Puis nous analysons le comportement des objets suivis, lors de l’analyse de niveau moyen.

Finalement, l’analyse de haut niveau est composée d’une interprétation sémantique de
ces comportements et d’une détection de scenarios de haut-niveau.
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Chapter 1

Introduction

Over the last decade, computers and world-wide networks influenced our daily life, mainly
by increasing our communication capabilities. Along with computers advances, image and
video data is more and more accessible and becomes a common part of people’s lives. For
instance, most mobile phones are equipped with a camera capable of recording videos. At
the same time, fast Internet access and increasing storage capacities enable the exchange
of such data. For example in summer 2010, more than 100 millions people were active on
Facebook and Youtube received 2 billions visitors every day.

With the growing amounts of data, it becomes more and more interesting to analyze
videos. Therefore, applications are developed in various fields of computer vision to auto-
matically process and analyze these videos.

For example, video retrieval in large scale databases currently requires costly manual
annotation and Web search engines rely on textual description or tags to find relevant videos.

Another example are video-surveillance applications. Video-surveillance cameras are
used for controlling access to special areas, identifying specific people in certain scenes, an-
alyzing crowd flux, detecting anomalies, monitoring traffic, etc.

A further application area is computer games, where video analysis is used as a human-
computer interface. Microsoft Kinect is a hardware device combining several sensors: a
video camera, an infrared depth sensor, and a multi-array microphone. Several video games
use full-body 3-D motion capture, face recognition, and acoustic analysis to play without
controller devices and interact in a virtual world.

Motion capture of human actions becomes a standard for character animation in ani-
mated movies and for special effects in movies. Human motion analysis is also used for
medical applications and analysis and optimization of movements of athletes or dancers.
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These examples show that there is a large demand for computer vision systems that
analyze and process videos automatically. However, automatic video analysis possibilities
are rather limited yet and are far behind the capabilities of humans.

1.1 Marketing problematic and goals

The marketing field has new demands that require computer vision systems. These systems
are used to measure digital media and display efficiency. In fact, the marketing field has
evolved over the last years. The use of digital media, or digital signage, at points of sales be-
comes more and more popular. These new technologies bring along the potential to open up
new communication channels with customers. However, several technical challenges have
to be addressed to make these new channel deliver their message efficiently. For example,
media playing advertising clips one after another have no significant impact on customers.
It is then of primary concern to identify ideal content and location for these media in order
to maximize their impact on customers. Nowadays several software systems help solving
these challenges. A few systems track customers, in a video-surveillance context, to obtain
statistical information regarding customers’ habits and displacement inside shopping malls,
such as [25]. Various systems directly calculate the media audience and opportunity to see
the media, using face detection [116].

The study introduced in this thesis is along the same lines and aims at improving the
impact of digital media by maximizing interaction between media and customers. Further-
more, we want to produce statistical data off the interactions between the customers and
products. More specifically, we detect customers picking up products from known areas
in real-time using a fixed camera. The detection of such an event results, for example, in
playing a clip related to the product.

This work is achieved in collaboration with MIRANE S.A.S. that is the french leader on
digital signage.

1.2 Shopping setting

This section presents the shopping setting with more details. As we can see in the previous
work in chapter 4 section 4.2, behavior analysis and action recognition are used in various
contexts. Several datasets were used as a baseline for many researchers. We categorize four
sorts of datasets used for different applications.

First kind of datasets, such as [129] [12] [155], aims at detecting specific actions like peo-
ple waving, jumping, walking, running, boxing, etc. Videos are mainly taken without cam-
era motion and focus essentially on the actor.
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The second type of datasets [78] [133] are directly extracted from movies. These datasets
are used to detect human actions such as shaking hands, hugging, answering the phone, etc.

Different kinds of behavior can be detected in a video-surveillance setting [2] [133], like
meetings, language drop, crowd analysis, etc.

The last type of datasets concerns sports videos [123]. The configuration varies and can
be focused on the actors, extracted from a TV transmission, or similar to surveillance.

Nowadays, only a few studies used dataset coming from shopping environment, i.e.
points of sale [54]. The shopping setting is between action recognition such as [129] that ob-
serves a person to detect its action or motion and video-surveillance that detects interactions
between people, luggage, specific areas of the scene, etc. Thus, we want to detect customers’
actions as well as interactions with specific areas of the scene, i.e. products areas.

1.3 Previous work overview

Along this thesis, we present some previous work in various fields of computer vision: mo-
tion detection, object tracking, human behavior understanding, human action recognition,
and semantic description of behavior. Several surveys offer a good overview of the subject.

[149] presents an overview of motion detection with a focus on global models of the
background using data analysis methods. [24] shows a panel of motion detection meth-
ods applied to traffic scenes [110] compares several motion detection algorithms in terms
of speed and memory requirements. [145] proposes a motion detection and tracking sys-
tem and compares the proposed detection technique with 9 other methods. [113] presents
five pixel-based motion detection methods for outdoor surveillance. [165] is probably the
more exhaustive state of the art concerning object tracking. This survey also present motion
detection. [53] proposes a clear survey on video-surveillance systems. Motion detection, ob-
ject tracking, behavior understanding, and semantic description of behaviors are presented.
[100] is a survey on trajectory learning and analysis for surveillance. Many behavior analy-
sis systems are based on trajectories, especially in traffic monitoring systems. [96] presents a
state of the art on human motion capture and analysis. Various types of motion detections
are presented. [153] presents the same topic with a major part dealing with motion detection
techniques. [69] shows an overview of human action recognition. [156] and [115] present
two survey on the same field. For further information on this topic, the reader can refer to
[21], [95], [41], [4], and [147].
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1.4 Chosen approach

1.4.1 Tasks

Our first goal is to detect motion to identify areas of interest in the image. We then want
to track moving areas, corresponding to people, across frames. Once objects, or people, are
detected and identified along the sequence, we define measurements related to their interest
in the products from the scene. Then, we define a list of interesting states to recognize. These
states are organized in a finite state machine and are first all detected deterministically. We
further work on the detection of the “Interact” state, corresponding to a person picking up
products. We propose a probabilistic approach to detect this state using various descriptors
on the motion in a local spatio-temporal context. We further create two high-level processes
that interpret the detected states of each person for non-specialist operators. We generate
sentences in natural language to summarize each person’s actions and we detect three dif-
ferent scenarios achieved by the customers.

1.4.2 Constraints

It is important to note that we have strong real-time constraints. The system developed has
to be fast to generate responses quickly as soon as an event occurs. Furthermore, we want to
avoid the use of algorithms that require a long training phase to simplify the installation of
the system.

1.4.3 Datasets

To test our methods, we produce several video datasets. The setup is presented as follows:
people walk around an indoor scene and grab products on a horizontal rack, such as a table.
Several heaps of products are in the scene. We first shoot sequences in our LAB using various
products of different sizes, colors, and shapes using various camera locations. Then, we
take more videos in a real environment: a shopping mall. In both locations, we separate
videos where only one person is acting in the scene at a time and videos with several actors
interacting together. We note that we use other datasets, such as video-surveillance and
traffic monitoring videos, to test the motion detection and object tracking systems.

1.4.4 Overview

We present our system that is based on a low-level analysis module composed of motion de-
tection and object tracking. Then, mid-level analysis determines the current state of action of
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each tracked object. Finally, the high-level analysis module is separated in two processes: se-
mantic description of the objects behavior and recognition of predefined scenarios achieved
by these objects, see figure 1.1. Each module is evaluated and we conclude with perspectives.

Figure 1.1: System diagram
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Introduction

Ces dix dernières années, les ordinateurs et Internet ont influencé notre vie de tous les jours.
Ils ont permis d’augmenter nos capacités à communiquer. De même, les images et vidéos
sont de plus en plus accessibles et sont utilisées par tous. Par exemple, la plupart des télé-
phones portables sont équipés d’appareils photo et de caméras. Simultanément, les accès in-
ternet à haut débit et les grandes capacités de stockage permettent d’échanger ces données.
Par exemple, en été 2010, plus de 100 millions de personnes étaient actives sur Facebook et
Youtube recevait 2 milliards de visiteurs chaque jour.

Vu l’augmentation de la taille des données échangées, il devient de plus en plus impor-
tant d’analyser les vidéos. En effet, des applications sont développées dans divers champs
de la vision par ordinateur, afin d’analyser et de traiter automatiquement ces vidéos.

Par exemple, la récupération de vidéos dans des bases de données nécessite des annota-
tions manuelles importantes et les moteurs de recherche Internet se basent essentiellement
sur des textes de description et des tags pour trouver des vidéos.

Un autre exemple de type application sont les systèmes de vidéo-surveillance. Les caméras
de vidéo-surveillance sont utilisées pour contrôler l’accès à certaines zones, identifier des
personnes, analyser des groupes de personnes, détecter des anomalies, analyser le trafic
routier, etc.

Les jeux vidéo représentent un autre domaine d’application. L’analyse vidéo sert d’interface
entre homme et machine. Par exemple, la caméra Kinect de Microsoft est composée de
plusieurs capteurs: une camera classique, un capteur de profondeur infrarouge et un mi-
cro. Divers jeux vidéo utilisent des modèles 3-D du corps humain, de la détection de visages
et de l’analyse acoustique pour plonger le joueur dans un monde virtuel dans lequel il n’a
pas besoin de manette pour interagir.

Les films d’animation utilisent des systèmes de capture de mouvement pour animer des
personnages virtuels ou générer des effets spéciaux. L’analyse de mouvements humains est
aussi utilisée dans le milieu médical et sportif.
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Ces exemples laissent présager une forte demande pour des procédés permettant le
traitement automatique de vidéos. Cependant, ces systèmes restent limités et loin des per-
formances d’un opérateur humain.

Le point de vue marketing

Le domaine du marketing au point de vente a évolué avec l’ère de la publicité sur lieu
de vente: PLV dynamique ou “Digital Signage”. L’utilisation de grands écrans et autres
systèmes d’affichage dynamique sont de plus en plus courantes dans les points de ventes.
Cette technologie permet un nouveau type de communication avec les clients. Cependant,
Ces nouveaux systèmes présentent de nouvelles difficultés. Par exemple, diffuser des clips
publicitaires les uns après les autres n’a pas d’impact important sur les clients. Il est donc im-
portant d’optimiser la position et le contenu de ces systèmes. De nos jours, il existe quelques
logiciels permettant de répondre à ces difficultés. Certains systèmes suivent les clients d’un
magasin avec des camera de vidéo-surveillance afin de connaitre les lieux de fort passage
dans les magasins [25]. D’autres systèmes permettent de calculer l’audience d’un écran en
détectant les visages [116].

Nos travaux portent sur la même problématique: améliorer l’impact des systèmes d’affichages
en maximisant les interactions entre l’écran et les clients. De plus, nous souhaitons générer
des données statistiques sur les interactions entre les clients et les produits. En particulier,
nous détectons les clients qui saisissent des produits dans des zones prédéfinies en temps
réel en utilisant une caméra fixe. La détection d’un tel évènement pouvant générer la diffu-
sion d’un clip lié au produit.

Le point de vente

Ce paragraphe présente les spécificités du point de vente. Comme on peut le voir dans
la section “Previous work” du chapitre 4, l’analyse de comportement et la reconnaissance
d’action sont utilisées dans divers contextes. Il existe beaucoup de vidéos utilisées pour de
telles analyses. Nous présentons quatre types de vidéos:

Des vidéos telles que [129], [12] et [155] ont pour but la détection d’actions humaines
comme faire des sauts, saluer, marcher, courir, boxer, etc. Ces vidéos sont focalisées sur la
personne réalisant les actions et la caméra est généralement fixe.

Le deuxième type de vidéos [78] [133] sont des extraits de films. Dans ce cas, on cherche
à détecter des actions telles que répondre au téléphone, se serrer la main, s’enlacer, etc.

Il existe beaucoup de vidéos de vidéo-surveillance [2] [133]. On cherche à y détecter des
réunions, des bagages abandonnés, analyser des foules, etc.
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Le dernier type de vidéos concerne le sport [123]. Les configurations varient beaucoup:
caméra focalisé sur l’acteur, vidéo extraite de diffusion télévisée, etc.

De nos jours, Il n’y a que très peu d’études réalisées dans des points de ventes [54]. Ce
type d’environnement se trouve entre les vidéos de reconnaissance d’action et de mouve-
ment [129] et les vidéos de type vidéo-surveillance. Nous cherchons donc à détecter les
actions des clients ainsi que leurs interactions avec des zones définies dans la scène, i.e. des
zones correspondantes aux produits.

Présentation des travaux précédents

Le long de cette thèse, nous présentons des états de l’art dans plusieurs domaines de la vision
par ordinateur: la détection de mouvement, le suivi d’objets, l’analyse de comportement
humain, et la description sémantique de comportement. De nombreux articles offrent une
vue d’ensemble des ces différents domaines:

[149] présente le domaine de la détection de mouvement et se focalise sur les modélisa-
tions globales de l’arrière-plan utilisant des méthodes d’analyse de données. [24] présente
les méthodes de détection de mouvement appliquées au trafic routier. [110] évalue les per-
formances en terme de vitesse et mémoire de diverses méthodes de détection de mouve-
ment. [145] propose une méthode de détection de mouvement et de suivi d’objet et la com-
pare avec 9 autres méthodes. [113] présente cinq méthodes de détection de mouvement
basées pixel pour la surveillance de scènes extérieures. [165] propose un état de l’art très
complet sur le suivi d’objet. La détection de mouvement est aussi présentée. [53] présente
une étude des systèmes de vidéo-surveillance très claire. La détection de mouvement, le
suivi d’objet, l’analyse de comportement et la description sémantique de comportement y
sont présentés [100] propose une étude sur l’analyse et l’apprentissage des trajectoires pour
la surveillance. En effet, beaucoup de systèmes d’analyse de comportement sont basés sur
les trajectoires des objets, surtout dans des contextes d’analyse du trafic routier. [96] présente
un état de l’art sur les systèmes de capture de mouvement ainsi que diverses méthodes de
détection de mouvement. [153] présente le même sujet avec une grande partie consacrée à la
détection de mouvement [69] présente la reconnaissance d’actions humaines. [156] et [115]
proposent deux études sur le même domaine. Pour plus d’information sur ce domaine, se
référer à [21], [95], [41], [4], et [147].
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Approche choisie

Taches

Le premier but de notre système est de détecter le mouvement pour identifier les zones
d’intérêt de l’image. Ensuite, nous suivons ces zones de mouvement le long de la vidéo.
Ces zones de mouvement correspondent à des personnes marchant dans la scène. Une fois
que ces zones, ou objets, sont détectés et identifiés, nous définissons des mesures liées à
leur intérêt pour les produits présents dans la scène. Puis, nous définissons plusieurs états
intéressants à reconnaitre et les organisons dans une machine à états finis. Les états sont
d’abord détectés de manière déterministe, puis nous détectons l’état “Interact” de manière
probabiliste. Cet état correspond à une personne saisissant des produits et est détecté en
utilisant des descripteurs basés sur le mouvement dans un contexte spatio-temporel local.
De plus, nous créons deux procédés de haut-niveau, qui interprètent les états détectés pour
chaque personne. Des phrases en langage naturel sont générées, résumant les actions réal-
isées par chaque personne. Nous détectons aussi le scenario réalisé par chaque personne,
parmi trois scenarios prédéfinis.

Contraintes

Nous devons faire face à de fortes contraintes temps-réel. Le système doit être rapide afin
de générer des réponses rapides, des qu’un évènement apparait. De plus, nous souhaitons
éviter d’utiliser des algorithmes nécessitant de longues phases d’apprentissage, afin de sim-
plifier l’installation du système.

Données

Plusieurs jeux de données sont générés pour tester nos méthodes. Nous nous plaçons dans
la configuration suivante: des personnes se déplacent dans une scène à l’intérieur et sai-
sissent des produits sur des présentoirs horizontaux, telle une table. Plusieurs amas de
produits sont disposés sur le présentoir. Nous prenons des vidéos dans notre laboratoire
et dans un environnement réel: un point de vente. Dans ces vidéos plusieurs positions de
caméra sont utilisées et les produits disposés ont diverses tailles, couleurs et formes. On
note, que les vidéos sont classées en fonction du nombre de personnes interagissant avec
les produits. Finalement, nous utilisons des jeux de données provenant d’applications de
vidéo-surveillance et d’analyse du trafic routier, pour tester la détection de mouvement et le
suivi d’objet.
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Plan

Nous présentons notre système basé sur une analyse de bas-niveau, composée de la dé-
tection de mouvement et du suivi d’objets. Puis, l’analyse de niveau moyen détermine
l’état actuel de chaque objet suivi. Finalement, l’analyse de haut-niveau est séparée en deux
procédés: la description sémantique du comportement de ces objets et la reconnaissance de
scenarios prédéfinis joués par ces objets, voir figure 1.1. Chaque module du système est
évalué et nous concluons avec les perspectives.



Chapter 2

Motion detection

2.1 Introduction

This chapter presents motion detection. Motion detection aims at detecting moving regions,
in a video sequence, i.e. separate these regions, or foreground, from the background.

Background is mainly composed of stationary areas, such as walls, furniture, buildings,
vegetation, ground, etc. However, background is also composed of non-stationary areas:
objects shadows, computer screens, fan, running escalators, tree branches, clouds, etc.

Foreground corresponds to moving objects. These objects are of interest and are detected
by the motion detection method. Depending on videos, these objects have different size,
shape, texture, speed, etc.

Motion detection is often the base for higher level process, such as object tracking, be-
havior analysis, human motion capture, etc. These applications mostly observe deformable
objects like human, rigid objects like vehicles, or both. Depending on what we are observing,
we can select relevant methods.

Motion detection aims at detecting changes of the pixel intensity values along time. There
are various types of changes:

• Global changes are detected all over the image and are due to camera motion or light-
ing changes.

• Local changes often correspond to foreground object, or background non-stationary
areas.

• Once-off changes can be global or local and can correspond to moving background
objects, such as people depositing or taking objects. It is easy to miss some of these
changes that can be related to relevant actions. For example, our application focuses
on interactions between products that belong to the background and people acting in
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the scene. A product taken by a person generates a "once-off" change that must be
detected.

The goal is to detect the relevant changes and filter out the irrelevant ones.

Detecting motion presents several challenges, such as:

• Textural similarity between foreground objects and the background: it reduces changes
in the images and makes them hard to detect.

• Detection of small objects: they might be considered as noise and are harder to detect.

• Camera motion: even if we assume that the camera is fixed, the camera can be moving
because it is not properly fixed, or due to weather conditions in outdoor scenes.

• Lighting changes: they occur when clouds pass or when the camera auto-white-balance
adjust the image intensity, for example.

• Complex scenes with partial or complete occlusions: these occlusions can be caused by
the background or several people aligned with the camera.

In this chapter, we first review previous works and then present various motion detec-
tion methods. These methods are implemented and tested on various video datasets. First,
we present a simple method that use image differencing and do not require a background
model. Then we generate a model to improve the detections. This model is first calculated
with a temporal averaging (TA) method. Then we use a method based on Bayes decision
rules (BDR) classification of pixels. Next, we use a Gaussian mixture model (GMM) of
the background. Finally, the last method that uses an improved Gaussian mixture model
(iGMM) with shadows detection offers the best results and is used for our final application.

2.2 State of the art

Motion detection is a method that aims at detecting areas of an image where motion occur.
literature can refer to motion detection as background subtraction, which is the process fol-
lowing the construction of the background model. The current image is compared to the
background to obtain foreground areas corresponding to motion.

2.2.1 Taxonomy

Based on the various surveys described in the introduction [149], we can classify motion
detection methods in four categories.
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• Detection without background model: These methods aim at calculating for each
pixel a value that is a function of the intensity or the color. These values represent
motion intensity.

• Pixel-based background model: These methods assign to each pixel of the image a
value or an intensity function that models the appearance of the background. We only
use the measurement taken on the specific pixel. Most of these methods generate a
statistical model. However, models can be generated from a probabilistic process, a
predictive filter, or based on a single intensity value per pixel.

• Local background model: These methods use the neighborhood of a pixel instead of
the pixel itself to calculate the similarity measurement. Specifically, these methods
calculate if a block of pixels belongs or not to the background.

• Global background model: These methods use the entire image at each frame to build
a model of the entire background.

2.2.2 Detection without background model

This section presents three examples of motion detection techniques: image differencing,
spacial temporal entropy and optical flow.

2.2.2.1 Image difference

An intuitive way to detect motion in an image is to calculate the difference between two
consecutive frames [60]. This method is further presented in chapter 2, section 2.3.1.

2.2.2.2 Spacial temporal entropy

Entropy is a thermodynamic property that is a measure of the energy not available for useful
work in a physic process. In our case, we want to calculate the “variability” of the pixels
intensity. When the pixel intensities vary a lot, the entropy increases. [88] calculates the
entropy based on spatial temporal histograms and generates a Spatial Temporal Entropy
Image (STEI). This image highlights the areas where the pixels intensities vary a lot in the
temporal domain or in the spatial neighborhood. These areas correspond to motion areas
as well as contours areas. In order to only detect motion, spatial variations can be down-
weighted. Moreover, [88] proposes to apply morphological filters to improve the STEI.

[62] proposes to use image difference as input to calculate the entropy, instead of the
frames.
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2.2.2.3 Optical flow

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and the scene. Various papers deal
with these methods [51] [87] [8] [50]. [8] and [50] propose surveys on various optical flow
algorithms. We note that optical flow calculation requires some computation times and a
fast method is required to satisfy real-time constraints. One of the most popular and fast
method is [87] that is based on the “image constraint equation”.

2.2.3 Pixel-based background model

2.2.3.1 Image model

The simplest way to model the background is an image of this background without fore-
ground objects. This method can detect slow, fast, or even stopped objects. However such
methods can not cope with lighting changes in outdoor environment. Moreover, it is not
always possible to obtain a background image without foreground objects. It is therefore
necessary to update this model over time.

[164] proposes to use image difference to update the background model. The method
considers the first frame as an approximation of the background. Then, the difference be-
tween the previous and the current image is calculated. Pixels where no difference is ob-
served for a certain amount of time are updated with current image values.

[29] calculates the background model by applying a median filter over N frames. In
other words, the median value of the N last frames is selected as foreground for each pixel,
see chapter 2 section 2.3.2. [28] improves this method, by using the medoid instead of the
median filter.

Finally we present, in chapter 2 section 2.3.2, several temporal averaging methods that
correspond to this category of motion detection techniques.

2.2.3.2 Statistical model

Statistical model aims at estimating probability to observe an intensity value on a given
pixel. The model is build by learning the appearance of the background and is composed
of a set of probability density functions for each pixel of the image. If the current value of
a pixel has a high probability, the pixel is considered as background. When the value has a
low probability, the pixel corresponds to a foreground area.

[159] and [93] model the background by a Gaussian distribution. For every pixel, the
mean and variance are updated recursively. A pixel belongs to the background if its current
value is close to the mean of the Gaussian; we also take the variance into account. This
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model offers good results for indoor scenes with static background. However, the method is
not robust to periodic motion, such as tree branches, because the model is uni-modal.

[136] proposes a multi-modal model by using a mixture of K Gaussian distributions. This
method is further described in chapter 2 section 2.3.4.

Later on the Mean-Shift algorithm, used in clustering and segmentation, is used to cre-
ate a multi-modal model of the background [45]. Based on a set of samples the algorithm
detects the modes, and their number, of a complex distribution. However, this method is
computationally expensive and can not be run at every frame.

2.2.3.3 Predictive model

Predictive methods are similar to statistic approaches. These methods apply Wiener or
Kalman filter to predict the value that should be observed at a given pixel coordinates. The
distance between the estimate and the current value is used to calculate the motion ampli-
tude. These methods handle non-static backgrounds.

[145] presents a method operating on three levels: pixel-level, local-level, and global-
level. The pixel-level segmentation is achieved by using a Wiener filter [47].

Most methods use Kalman filter [159]. However, many methods use different state vector
to describe the system. [159] uses Kalman filter to calculate the parameters of the Gaussian,
which model the background. [15] simply uses the intensity values as state vector, [121] uses
the temporal derivative, and [72] uses the spacial derivative.

2.2.4 Local background model

2.2.4.1 Region detection

Local models use the neighborhood of a pixel instead of the pixel itself to calculate the simi-
larity measurement. [122] builds a hidden Markov model (HMM) [117] based on 3x3 pixels
blocks covering the entire image. Specifically, this method is based on the intensity mean
of the block and the gradient and detects, for each block, one of the three predefined states:
The block corresponds to background, foreground, or a shadow.

2.2.4.2 Texture

[48] uses Local Binary Pattern (LBP) code to calculate the pixels texture.

Similarly to [136], the model is composed of a set of K weighted modes. Modes corre-
spond to LBP histograms calculated on each block. At a new frame, a new histogram h is
calculated for each block. Then, h is compared to the K histograms of the model. If there is
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no histogram matching h, the histogram with lower weight is replaced by h. If a histogram
m is close to h, m is updated as well as the model weights.

Finally, only the b histograms with the higher weights, which are larger than a threshold,
are considered as modeling the background. If h do not match any of these b histograms, the
area represented by h is considered as foreground.

2.2.4.3 A posteriori improvement

Several methods [145], [35], and [144] use multiple levels of detection. First pixel-based
motion detection is achieved. Then, these results are analyzed to improve the consistency of
the detected regions.

[145] first detects moving regions with a Wiener filter. Then, a segmentation process
improves the regions contour.

[35] uses the local neighborhood of each foreground pixel to detect false detections, due
to small background motion or camera motion. On each foreground pixel, the system cal-
culates the probability that the pixel correspond to a neighbor background. This probability
is high when the motion is due to a slight background motion. However, this value is also
high on real motion of objects that have similar texture as the background. This case is taken
into account by doing the same test over the entire connected foreground region. The entire
region must correspond to background motion to be considered as background.

[144] uses optical flow to improve the detection: areas where the optical flow had major
variations in the past frames are deleted from the foreground.

2.2.5 Global background model

2.2.5.1 Model mixture

[145] wants to take the entire scene into account during the segmentation process. Thus, k
models are calculated with “k-means” algorithm on a set of images, used as training. Then,
pixel-based motion detection is achieved on each model. The model with the less motion
detected is selected as the final result. We note that the models are updated when a large
amount of pixels are detected as foreground.

[137] proposes a HMM that switches between several motion detection techniques to
cope with dynamic environments. This model is build to handle fast light changes. For ex-
ample, the HMM has two state (day/night) associated with two different pixel-based model
of the background.
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2.2.5.2 Eigen background

[102] presents a method for motion detection using a data analysis technique. The image
sequence is represented as a three-dimensional matrix. The background is modeled by using
N non-consecutive frames. Then, the covariance matrix is calculated and diagonalized to
obtain the Eigen values. The M first Eigen values are kept in a sub-matrix Φ to model the
background. We can reconstruct an image representing the background from the matrix Φ
and compare it with the current image to obtain the Distance From Feature Space (DFFS)
[97], or foreground.

Conclusion

The detection methods presented in this chapter use a pixel-based model of the background,
except for image differencing. In fact, these models offer precise results, i.e., at a pixel level.

2.3 Evaluated Approaches

2.3.1 Image difference

One of the basic ideas to detect motion is image differencing, or frame differencing. This
method aims at calculating the difference between two, or more, consecutive frames.

Method description and evaluation

First, we calculate the difference between two consecutive frames on each channel. Then, we
average this difference over the three channels and binarize the result, see figure 2.1 and 2.3
(b). The following equations define the calculation of the difference between two consecutive
frames: Di f f2 and how the result Res is binarized.

Di f f2(x, y, t) = |I(x, y, t− 1)− I(x, y, t)| (2.1)

i f Di f f (x, y, t) > T then Res(x, y, t) = 1

else Res(x, y, t) = 0
(2.2)

Where I(x, y, t) represents the pixel value at coordinates (x, y) at time t in the image
sequence.
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It is interesting to note that this method tends to detect motion on the contour of a person.
Areas covered by the person in the current frame that were corresponding to background in
the previous frame are well detected. However, parts of the person in the previous frame
that becomes background in the current frame are also detected. These parts do not corre-
spond to the person in the current frame. Furthermore, when a person is wearing relatively
homogeneous clothes a major part of the person is not detected, see figure 2.1. Thus, a
person that stops moving, or moves slightly is not detected anymore, see figure 2.5. This un-
detected parts correspond to the areas covered by the person in the two consecutive frames.
These detections result in a shifting effect, i.e. motion is detected between the current person
position and its previous position.

(a) frame (b) foreground

Figure 2.1: Frame differencing: previous frame

(a) frame (b) foreground

Figure 2.2: Frame differencing: previous and next frames
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A first improvement to this technique is to compare the current image n to an older
image n− 2 or n− 3. Following the same method, we detect larger areas of motion on both
the moving object and the background, see figure 2.3 (c).

Another improvement of these techniques is done by adding to the first result the differ-
ence between the current frame and the next frame, as we see in the following equation.

Di f f3(x, y, t) = Di f f2(x, y, t) ∪ Di f f2(x, y, t + 1) (2.3)

Similar effects are noted as in the previous case, such as motion detected on the side of
the person, see figure 2.2. Furthermore, ghost effects appear when a person moves fast, see
figure 2.4. However, the shifting effect is compensated, since motion is detected on both
sides of the person, see figure 2.3 (d).

(a) frame (b) difference with frame n-1

(c) difference with frame n-2 (d) difference with frame n-1 and n+1

Figure 2.3: Comparison of three methods
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(a) frame (b) difference with frame n-1 and n+1

Figure 2.4: Ghost effect due to fast motion

(a) frame (b) difference with frame n-1 and n+1

Figure 2.5: The person is stopped, only its arm is moving and is detected

Conclusions

These techniques are very fast: the processing of one 704x576 frame takes about 0.01 second
on a Pentium M, 1.73 GHz with 500 Mb of RAM. We note that all the motion detection
techniques in this chapter are tested in the same conditions.

However, these techniques share several limitations. The detections are not precise: the
object is not fully detected and motion is detected on the background. If a person stops
moving, there is no motion detected anymore. In the opposite case, when a person moves
fast, ghost effects appear.

The use of a background model appears to be an interesting method to solve several
issues.
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2.3.2 Temporal averaging

Following the idea that a background model improves motion detection results, we build
a background model by calculating the mean over several images while no object is in the
scene.

2.3.2.1 Method description

We calculate the average value of each pixel along the three channels. The following equa-
tion shows how to calculate the background model M from the images of the sequence.

M(x, y, t) =
t

∑
i=t−T

I(x, y, i)
T

(2.4)

T represent the frame interval, used to refresh the background.

Then we test a median filtering technique. Similarly to the previous method, we save
the last T frames. For each pixel, we sort the T values and use the T

2 th value to model the
background.

M(x, y, t) = mediani I(x, y, i), with i = [t− T, ..., t]. (2.5)

Finally, we approximate the first solution 2.4 using an Infinite Impulse Response filter:

M(x, y, t) =
T − 1

T
M(x, y, t− 1) +

1
T

I(x, y, t) (2.6)

This approximation allows us to save time and memory since we do not require to save
the last T frames. Once the model is generated, we calculate the difference between the
current image and the model. If there is a high difference, pixel are considered as being part
of the foreground, i.e. corresponding to a moving region. The following equations show
how the distance Dist between the current frame and the model is calculated and how the
result Res is found.

Dist(x, y, t) = |M(x, y, t)− I(x, y, t)| (2.7)
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i f Dist(x, y, t) > T then Res(x, y, t) = 1

else Res(x, y, t) = 0
(2.8)

As we see on figure 2.6 (b) and (e), shadows generate false positive with such a model.
Thus, we converted the images into YUV color space. Y stands for the luminance component,
i.e. brightness, and U and V are the chrominance, or color, components. Since luminance
and chrominance are separated on different channels, only the luminance channel is really
sensitive to shadows. Furthermore, chrominance channels receive a higher weight than the
luminance channel in order to reduce, even more, the shadows effects, see figure 2.6 (c) and
(f). Then, the distance along the three channels together Disttotal is calculated as follows:

Disttotal(x, y, t) =
3

∑
i=1

ωiDisti(x, y, t) (2.9)

Where i = [1, 2, 3] represents the different channels and ωi are the weight for each chan-
nel. The chrominance weights ω2 and ω3 are larger than the luminance weight ω1. In our
case ω1 = 1/7 and ω2 = ω3 = 3/7. However using this technique, small illumination
variations on highly textured areas can lead to false positives, see figure 2.7.

It is interesting to note that the background model is further improved in order to detect
people stopping in the scene. Using the temporal averaging technique, if a person enters the
scene and stops moving, the person slowly disappears and becomes part of the background.
Depending on the value of T, the disappearance can take seconds or minutes. But this prob-
lem is of major interest, since people tends to stop often in a shopping environment. In fact,
people do not have homogeneous trajectories and look for products, wander around, look
at prices, etc.

We assume that the background remains relatively stationary while being occluded by
an object. Then, we can save the model values before the occlusion occurs and keep it iden-
tical while occluded by a moving object. Thus, we do not refresh areas of the model where
foreground objects are detected, as well as its close neighborhood. Specifically, each pixel of
the result mask outputted by the tracking process, see chapter 3, is tested to determine if the
corresponding pixel of the background model should be refreshed or not.
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(a) frame (b) RGB (c) YUV

(d) frame (e) RGB (f) YUV

Figure 2.6: Temporal averaging technique: sensibility to shadows comparison between RGB and
YUV color space

2.3.2.2 Evaluation

We comment on the value of T in the equation 2.6. We first used small values such as T = 5.
Small values do not produce a stable background model and large value, like T = 100,
build a static model that can not adapt to general changes. We noted empirically that values
between T = 15 and T = 50 were offering better results because the background model is
stable against some level of noise and can adapt in case of general illumination changes.

We note interesting phenomenon due to the camera auto-white balance and auto-iris.
These two automatic preprocess can generate false detections in specific cases. When very
big objects with textures that are much darker, or brighter, than the background enter the
scene the auto-white balance increases, or decreases, the value of each pixel of the image.
Similarly, the auto-iris let more, or less, light enter the sensor. This event also results in an
increase, or a decrease, of each pixel value. Such phenomenon can lead to false detections
on highly textured areas, see figure 2.7

Also, in several datasets, we can observe periodic camera motion. Such motion generates
a shifting of a couple of pixels over the entire image, generating motion close to edges in the
entire image, see section 2.5 figure 2.16.
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(a) frame (b) RGB (c) YUV

Figure 2.7: Temporal averaging technique and issues on highly textured area when light changes
occur: comparison between RGB and YUV color space

Since our model is uni-modal, such noises (rapid modification of the pixels values) can
lead to false detections over the image. These false detections mostly occur on highly tex-
tured areas, for lighting changes, and on inhomogeneous areas, for camera motion.

Although these automatic processes can be monitored and the camera is supposed to be
fixed, a multi-modal model of the background can improve the detections and avoid these
false detections.

Finally, we note that the time to process one frame is around 0.02 second.

Conclusions

Using a background model, the detection is fast and much more precise than the image
differencing technique, since the entire person is correctly detected.

Shadows are well handled, but false-detections occur with light changes or when camera
motion occurs. A multi-modal background model can probably offer a solution to these
issues.

2.3.3 Bayes decision rules for classification

This section presents an elaborated method to describe the background [80].

Specifically, this method aims at formulating Bayes decision rules in order to classify
background and foreground using selected feature vectors. Stationary background objects
are described with color features, while moving background objects are described with color
co-occurrence features. Then, foreground objects are extracted from the fusion of the classi-
fication results from both stationary and moving pixels.

The first idea is that background pixels may have multiple states in complex environ-
ment. Therefore these different parts of the background should be analyzed with different
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features. Unlike most methods, [80] uses a general Bayesian framework based on various
features to model the background

2.3.3.1 Problem formulation and representation

Let vt be a feature vector extracted from the image sequence at the pixel coordinate s = (x, y)
and at time t. The following posterior probability of vt from the background b or foreground
f is calculated using Bayes rules:

P(C|vt, s) =
P(vt|C, s)P(C|s)

P(vt|s)
, C = b, or f (2.10)

Then a pixel belongs to the background if:

P(b|vt, s) > P( f |vt, s) (2.11)

Since a feature vector is either associated to the background or the foreground,

P(vt|s) = P(vt|b, s).P(b|s) + P(vt| f , s).P( f |s) (2.12)

substituting 2.10 and 2.12 in 2.11, we obtain

2P(vt|b, s).P(b|s) > P(vt|s) (2.13)

This relation allows us to determine if a feature vector vt is associated with the back-
ground of the foreground.

P(vt|s) and P(vt|b, s) can be represented by the histograms of feature vectors over the
entire feature space. For a feature vector with n dimension and L quantization levels, the
entire histogram for P(vt|s) or P(vt|b, s) would contain Ln bins. If L or n have large values,
operating on such a histogram would be expensive on computation and memory. Therefore,
we look for a good approximation.

The background contains mainly static areas, while interest objects often move in the
scene. If the selected features effectively represent the background, then background fea-
tures vectors would concentrate in a very small subspace of the feature histogram. Therefore,
foreground feature vectors would distribute widely in the feature space. In other words,
with a good feature selection, we can cover a large percentage (more than 90%) of the fea-
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ture vectors associated with the background using a small number of bins in the histogram.
Furthermore, less features vectors from foreground objects would be distributed in these few
bins.

Let P(vi
t|b, s), with i = 1, ..., N, be the first N bins from the histogram sorted according to

decreasing order of P(vt|b, s). For given percentage values M1 = 90% and M2 = 10%, there
is a small integer N1 that satisfies:

N1

∑
i=1

P(vi
t|b, s) > M1and

N1

∑
i=1

P(vi
t| f , s) > M2 (2.14)

N1 depends on the selected features and the number of quantitative levels used for the
features.

A table of feature statistics Ss,t,i
vt , with i = 1, ..., N2 (N2 > N1), is maintained for each type

of feature vectors. This table record the statistics for the N2 most significant values. Each
element of the table contains three components:

Ss,t,i
vt

= pt,i
v = P(vi

t|s)

pt,i
vb = P(vi

t|b, s)

vi
t = [ai

1, ..., ai
n]

T

(2.15)

We note that the elements in the list are sorted by decreasing values of pt,i
v . The first

N1 elements are enough to cover the main part of the feature vectors from the background.
Therefore, these elements together with ps,t

b are used to classify foreground and background
changes. The elements from N1 to N2 are used as a buffer to learn the new significant features
through the background updating phase.

We select the feature vectors as follows: When a background pixel is considered sta-
tionary, we select its colors as feature vectors Meanwhile, the color co-occurrences of the
inter-frame changes are selected as feature vectors for moving background pixels. In fact for
a moving background object, even if the color has major variations, color co-occurrence of
the inter-frames change is relevant since similar changes occur in the same location of the
image.

We note that Ss,t,i
ct and Ss,t,i

cct are maintained for each pixel to represent the multiple states
of the background pixels.
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2.3.3.2 Method description

This section describes the various parts of the algorithm, see figure 2.8. As we can see on this
diagram, the system is composed of four parts: change detection, change classification, fore-
ground objects segmentation, and background learning and maintenance. The light blocks
represent the first three steps, from the left to the right. The gray blocks correspond to the
background modeling step.

Figure 2.8: Block diagram of the algorithm

2.3.3.2.1 Change detection This module aims at filtering out pixels of insignificant change.
We first calculate the background difference Fbd(s, t) and the temporal difference Ftd(s, t) us-
ing [126].

2.3.3.2.2 Change classification Based on the result of change detection, we classify pixels
as foreground or background. Specifically, if Ftd(s, t) = 1, pixel is classified as a motion
pixel. Otherwise, the pixel is considered as a stationary one. Then we need to determine
if these pixels belong to the background or to the foreground. For stationary pixels, the
color feature vector vt = ct = [rt, gt, bt]T is generated. ct is the color component at time t
and has L = 64 levels. For motion pixels, the feature vector of color co-occurrence vt =
cct = [rt−1, gt−1, bt−1, rt, gt, bT

t is generated with L = 32 levels. We compare this feature
vector with vt with the first N1 learned features from the corresponding table of feature
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statistics for background. Let vt = [a0, ..., an]T and vi
t from the table Ss,t,i

vt 2.15. The conditional
probabilities are obtained as follow:

P(b|s) = ps,t
b

P(vt|s) = Σj∈M(vt)ps,t,j
v

P(vt|b, s) = Σj∈M(vt)ps,t,j
vb

(2.16)

Where the matched feature set in Ss,t,i
vt is defined as

M(vt) = k : ∀m ∈ 1, ..., n, |am − ak
m| ≤ δ (2.17)

With δ = 2 to retrieve the statistics if the similar features are quantized into neighboring
vectors.

If no element of Ss,t,i
vt matches vt, P(vt|s) and P(vt|b, s) are set to 0. We use the probabilities

calculated in 2.16 into 2.13 to classify pixels as background or foreground.

2.3.3.2.3 Foreground object segmentation Morphological filters are applied on the fore-
ground image to remove noises and improve objects’ shape and generate an output image
O(s, t).

2.3.3.2.4 Background learning and maintenance This process aims at adapting the back-
ground model to the various changes occurring over time. There are two main parts in this
section, updating the tables of feature statistics and the reference background image.

2.3.3.2.4.1 Updating tables of feature statistics Two tables of color and color co-occurrence
statistics are maintained for each pixel. Two updating process are generated to adapt the
background to gradual and "once-off" changes.

Gradual changes: Feature statistics for color and color co-occurrence are updated as fol-
lows:

ps,t+1
b = (1− α2)ps,t

b + α2Ms,t
b

ps,t+1,i
v = (1− α2)ps,t,i

v + α2Ms,t,i
v

ps,t+1,i
vb = (1− α2)ps,t,i

vb + α2(Ms,t
b ∧Ms,t,i

v )

(2.18)
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For i = 0, ..., N2, where α2 is the learning rate. Matching labels are generated as follows:
Ms,t

b = 1 when s is labeled as background from the final segmentation, otherwise Ms,t
b = 0.

Ms,t,i
v = 1 when vi

t is the closest match for vt and Ms,t,i
v = 0 for the others.

If there is no match between vt and the elements of the table, the N2th element in the
table is replaced by a new feature vector.

ps,t+1,N2
v = α2, ps,t+1,N2

vb = α2, vN2
t = vt. (2.19)

Once-off changes: When a "once-off" change occurs, the feature of the new background
appearance becomes dominated immediately after this change. From 2.14 and 2.12, new
background feature is detected if:

P( f |s)
N1

∑
i=1

P(vi
t| f , s) > T (2.20)

Where T is the percentage value that determines when the new features can be recog-
nized as new background appearance.

As in section 2.3.2, large value for T offers a stable system. However, this system is
responding slowly to "once-off" changes If T is small, the system easily learns the frequent
foreground features as new background appearance. T was set to 90%.

P( f |s) prevents updating from a small number of features. Using 2.12 and 2.15 in 2.20,
we obtain:

N1

∑
i=1

ps,t,i
v − ps,t

b

N1

∑
i=1

ps,t,i
vb > T (2.21)

Once the new background is detected, features are updated as follows:

ps,t+1
b = 1− ps,t

b

ps,t+1,i
vb = (ps,t,i

v − ps,t
b .ps,t,i

vb )/ps,t+1
b

(2.22)

With i = 1, ..., N1. This operation converts the observed domination features into the
learned background features.
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Convergence: It is interesting to note that the sum of probabilities for background features
converges to 1, as long as the background features are significant and more frequent than
foreground features.

Parameter selection for learning: In this paragraph, we focus on the selection of the
learning rate α2. α2 should be small to adapt to gradual changes and not be perturbed by
noises and foreground objects. However, α2 should not be too small to response to "once-off"
background changes.

2.3.3.2.4.2 Updating the reference background image A reference background im-
age is maintained at each time step. This image represents the latest observation of the
background.

For stationary background objects, we use an Infinite Impulse Response filter to update
the image. For a stationary pixel s, the background is calculated as follows:

Bc(s, t + 1) = (1− α1)Bc(s, t) + α1 Ic(s, t) (2.23)

Where c = r, g, b. If O(s, t) = 0 and Ftd(s, t) = 1 or Fbd(s, t) = 1, a background change is
detected. Then, the pixel is replaced by the new background appearance.

Bc(s, t + 1) = Ic(s, t), f or c ∈ r, g, b (2.24)

With this operation, the reference background image follows the background motion.

2.3.3.3 Evaluation

This method offers very accurate results, see figure 2.9 and 2.10. Having a background model
based on the classification of moving and stable pixels improves the detection and is robust
to camera motion and lighting changes, see section 2.5 figure 2.16.

We note that the method handles stopped people. However, a person leaving a location
after remaining static for a certain amount of time can generate some noise, see figure 2.10.

We note that the processing of one frame last for 0.3 to 0.4 seconds.
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(a) frame 85 (b) frame 110 (c) frame 172 (d) frame 207

(e) frame 272 (f) frame 311 (g) frame 348 (h) frame 451

(i) frame 85 (j) frame 110 (k) frame 172 (l) frame 207

(m) frame 272 (n) frame 311 (o) frame 348 (p) frame 451

Figure 2.9: BDR detection, Dataset LAB 1 video1

Conclusions

This method offers very good results. Typical noises, such as camera motion and lighting
changes, happening in the video datasets are well handled. However, noises are detected
when a person stops in a location for some time and then leaves.

Meanwhile the computation expenses are high, compared to the other methods. We keep
in mind that one of our primarily concern is to build a fast system able to produce a real-time
analysis. Thus, we continue evaluating other methods.
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(a) frame 128 (b) frame 207 (c) frame 228 (d) frame 285

(e) frame 342 (f) frame 368 (g) frame 376 (h) frame 418

(i) frame 128 (j) frame 207 (k) frame 228 (l) frame 285

(m) frame 342 (n) frame 368 (o) frame 376 (p) frame 418

Figure 2.10: BDR detection, dataset MALL 1 video 3

2.3.4 Gaussian mixture model

This section presents and tests a method that use a mixture of Gaussian to model the back-
ground [136]. Each pixel value is used to update the background model on-line. If the pixel
does not match one of the Gaussian distributions, then the pixel is considered as foreground.
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2.3.4.1 Method description

We consider a video as a series of images varying along the time. I (s, t) represents the pixel
value at time t at the coordinates s = (x, y). We model the recent history of each pixel by a
mixture of K Gaussian distributions. The probability of observing the current pixel value is:

P (I(s, t)) =
K

∑
k=1

ωk,t ∗ η (I(s, t), µk,t, Σk,t) (2.25)

Where K is the number of distributions, ωi,t the weight of the ith Gaussian in the mixture
at time t, µi,t is the mean value of the ith Gaussian at time t, Σi,t is the covariance matrix of the
ith Gaussian at time t, and η is a Gaussian probability density function defined as follows:

η (I(s, t), µ, Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (I(s,t)−µt)TΣ−1(I(s,t)−µt) (2.26)

Stauffer and al. [136] advise to fix the value of K between 3 and 5.

The covariance matrix is defined as follows:

Σk,t = σ2
k I (2.27)

In this case, we assume that red, green, and blue channels are independent and have the
same variance. Once the model is generated, the new pixel value I(s, t) has to be matched to
one of the K Gaussian distributions. Thus we use K-means approximation.

We note that a pixel value has to be within 2.5 standard deviation of a distribution to be
matched. If none of the distributions is matched, the least probable distribution is replaced
by a new one with the current value of the pixel, a high variance, and a low weight.

The following equation defines the weight of the K distributions at time t.

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (2.28)

Where α is the learning rate and Mk,t is equal to 1 for the matched distribution and 0 for
the others. 1/α corresponds to the number of frame that are taken into account to model the
background.

49



CHAPTER 2. MOTION DETECTION

Although µ and σ parameters of unmatched distributions do not change. The matched
distribution is updated as follows:

µt = (1− ρ)µt−1 + ρI(s, t) (2.29)

σ2
t = (1− ρ)σ2

t−1 + ρ(I(s, t)− µt)T(I(s, t)− µt) (2.30)

with

ρ = αη(I(s, t)|µk, σk) (2.31)

The next goal is to determine the distribution that is the most likely to be generated by
the background. The distribution must have the most evidence and the least variance. Thus,
Gaussian distributions are ordered by the value ω/σ. Once the list is ordered, the B first
distributions are selected as follows:

B = argminb

(
b

∑
k=1

ωk > T

)
(2.32)

Where T is the measure of the minimum portion of the data that should be accounted
for by the background. A small value for T is chosen for an uni-modal background model.
Higher T allows multi-modal distributions due to background motion, lighting changes, etc.

2.3.4.2 Evaluation

This method offers interesting results and is more robust to periodic motion and light changes,
compared to the temporal averaging technique, see section 2.5 figure 2.16.

However, we note a couple of limitations. The detection is very sensitive to shadows and
stopped objects tend to disappear after a certain amount of time, see section 2.5 figure 2.13,
2.14, and 2.15.

We note that the processing of one frame last for 0.25 to 0.35 seconds. However our
implementation is not very efficient, concerning the computation time, and can be improved.
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Conclusions

The Gaussian mixture model solves the main issues of the temporal averaging method. This
method handles camera motion as well as lighting changes due to a multi-modal model of
the background

However this method is sensitive to shadows and stopped objects disappear.

2.4 Chosen approach: Improved Gaussian mixture model

This section presents an improved method of [136]. The Gaussian mixture model is first
improved by adapting the number of selected Gaussian in the mixture [170]. Then, we use a
shadow detection process [66] to filter them out. Finally we modify the updating process of
the background model to cope with objects stopping in the scene.

2.4.1 Adapting the number of selected Gaussian

We first quickly go through the work of [136] presented in the section 2.3.4. The probability
of appearance of a pixel value at time t is presented in equation 2.25. This model corresponds
to a sum of Gaussian functions η with weights ωi,t. η is declared in equation 2.26. The three
equations 2.28, 2.29, and 2.30 respectively show how the model parameters are updated
along the image sequence. Finally, equation 2.32 selects the B most reliable distribution in
the mixture.

We now want to adapt the number of selected distribution B by modifying the calculation
of the distribution weight ωk. In fact, this method can then adapt to the local nature of the
data. For example, some areas of an image tend to be very homogeneous across frames,
where others tend to be subject to noises. An adaptive model can better feet the data.

The weight ωk is the part of the data that belong to the kth component, or distribution,
of the GMM. This weight can be considered as the probability that a sample comes from the
kth component of the GMM. Therefore, ωk defines an underlying multinomial distribution.

Let us assume that we have t data samples and that each of them belong to one of the
components of the GMM. Then, we calculate the number of samples that belong to the kth

component: nk =
t

∑
i=1

Mk,i Where Mk,i is defined in the section 2.3.4. This assumed multino-

mial distribution for nk gives a likelihood function: L =
K

∏
k=1

ωnk
k . The mixing of weights is

summing up to one. Then, a Lagrange Multiplier λ is introduced. The maximum likelihood

(ML) estimate follows from: d
dωk

(logL + λ(
K

∑
k=1

ωi − 1)) = 0. By getting rid of λ, we obtain:
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ωk,t =
nk

t
=

1
t

t

∑
i=1

Mk,i (2.33)

The weight ωk,t can also be rewritten in a recursive manner, based on ωk,t−1 and Mk,t.

ωk,t = ωk,t−1 +
1
t
(Mk,t −ωk,t−1) (2.34)

Now, by fixing 1
t to the value of α− 1

T , we found the equation 2.28. By fixing the influence
of the new samples, we rely more on the new samples and old samples weight is decreased
in an exponentially decaying manner.

We introduce prior knowledge for the distribution by using its conjugate prior, the Dirich-
let prior.

P =
K

∏
k=1

ωck
k

For the multinomial distribution, ck represents the prior evidence (in the maximum a
posteriori (MAP) sense) for the class k, i.e. the number of samples that belong to that class
a priori. According to [170], we use negative coefficients ck = −c. In fact, negative prior
evidence means that the class k exists only if there is enough evidence of the data. The MAP

solution that include the prior comes from: d
dωk

(logL + logP + λ(
K

∑
k=1

ωk − 1)) = 0, with

P =
K

∑
k=1

ω−c
k . Then, we obtain:

ωk,t =
1
O

(
t

∑
i=1

Mk,i − c) (2.35)

Where O =
K

∑
k=1

(
t

∑
i=1

Mk,i − c) = t− Kc. Then, we get:

ωk,t =
Πk − c/t
1− Kc/t

(2.36)

with Πk = 1
t

t

∑
i=1

Mk,i is the ML estimate from 2.33 and the bias from the prior is intro-

duced through c/t. For larger datasets, or large t, the bias decreases. However, if a small
bias is acceptable we can fix it to cT = c/T, with a large value for T. By replacing cT in 2.35,
we obtain:
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ωk,t = ωk,t−1 + 1/t(
Mk,t

1− KcT
−ωk,t−1)− 1/t

cT

1− KcT
(2.37)

Since we use only a few components K and cT is small, we assume that 1− KcT ≈ 1. We
replace 1/t with α and obtain:

ωk,t = ωk,t−1 + α(Mk,t −ωk,t−1)− αcT (2.38)

We use this equation to update the weights of each distribution instead of 2.28. We note
that according to the method presented in [136] section 2.3.4, weights are normalized after
each update. The Dirichlet prior with negative weights suppress the distributions that are
not supported by the data. All distributions with negative weights get discarded.

To conclude, the model can better adapt to various types of areas within the same image
and improves the detection.

2.4.2 Shadows detection and removal

An important issue of motion detection methods remains the sensibility to shadows. In fact,
shadows can often lead to false detections. The first idea to reduce this limitation was to use a
different color space that reduces the susceptibility, as in section 2.3.2. Such a representation
improves the results, however the light areas tend to generate false detections. Furthermore,
switching image color space requires some computation time.

Then, we use a new method that detects shadows [66]. The idea is to define a heuristic
to label Gaussian components as moving shadows. We stay in the RGB color space, to save
computation time, and look for a color model that is able to separate chromatic and bright-
ness components. Such a model has to be compatible with the Gaussian mixture model. We
use a low-computation color model similar to [52].

In fact, we compare foreground pixels against current background components. If the
difference in both chromatic and brightness components is within some thresholds, pixels
are considered as shadows. Specifically, we use the mean of the background: E, an expected
chromaticity line: ‖E‖, a chromatic distortion: d, a brightness threshold: τ. For the pixel
value I, the brightness distortion: a, and the color distortion: d are calculated as follows,
from the background model.

a = argmin(I − zE)2 (2.39)
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c = ‖I − aE‖ (2.40)

Since we assume that each component of the mixture has a spherical Gaussian distribu-
tion, the standard deviation of the kth component σk is set equal to d. A foreground pixel is
considered as a shadow if a is within 2.5 standard deviations and τ < c < 1. The brightness
threshold τ is set to 0.45 in our case.

For conclusion, the method can detect shadows and remove them to improve the detec-
tion results.

2.4.3 Stopped object handling

In most of our video datasets, people tend to stop in the scene to look at products, or their
prices. After some time immobile a stopped person is not detected as a foreground object
anymore and becomes a part of the background.

We modify the updating process for the distributions parameters: we do not refresh areas
that are considered as a tracked object. Tracked objects are defined in chapter 3. We introduce
Ft that is a binary image representing foreground object, as they are further defined. Ft is a
filtered foreground image where regions that were tracked for several frames, or objects,
are displayed. Pixels covered by an object have value 1 while the others have value 0. It
is interesting to note that these objects are slightly dilated to compensiate a slight shifting
effect due to the morpholigical filtering. As a result, the close neighborhood of a region is
not updated.

We modify the distribution parameters updating equations 2.38, 2.29, and 2.30. They
now have the form:

ωk,t = ωk,t−1 + (1− Ft)(α(Mk,t −ωk,t−1)− αcT) (2.41)

µt = µt−1 + (1− Ft)ρ(I(s, t)− µt−1) (2.42)

σ2
t = σ2

t−1 + (1− Ft)ρ((I(s, t)− µt)T(I(s, t)− µt)− σ2
t−1) (2.43)

Where ρ is defined in section 2.3.4.
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To conclude, this final improvement allows us to detect people stopping for a long period
of time in the scene.

2.4.4 Evaluation

This method improves the results obtained with the original work of [136]. The adaptive
background and shadows detection remove a lot of noises, see figure 2.11 and 2.12. On these
figures, shadows are represented as grey pixel, while white pixels correspond to the actual
detection.

Stopped objects are well handled and there is no noise when a person leaves after a stop,
see figure 2.11 and 2.12. However, the foreground object image has to be correctly created.
Only meaningful objects should be represented. If noises are on the foreground image, they
might be detected over several frames.

This methods has a few limitations and does not detect very precisely small objects as
we see in section 2.5, figure 2.17.

Finally, the implementation of the algorithm is improved and allows the process of one
frame in 0.05 to 0.08 second.

Conclusions

The new model can better adapt to various types of areas within the same image and im-
proves the detection. The method can detect shadows and remove them to improve the
detection results. People stopping for a long period of time are detected.

We note that this method requires a good foreground filtered image.

This method offers a good compromise between quality and speed.

2.5 Comparative evaluation and notes

This section proposes several tests that compare the different methods presented.

2.5.1 General comparison

We first compare the different methods on the same video sequence to highlight the differ-
ences in detection, see figure 2.13. We especially note that the Gaussian Mixture Model is
highly sensitive to shadows. Otherwise, the other methods offer relatively similar results.
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(a) frame 85 (b) frame 110 (c) frame 172 (d) frame 207

(e) frame 272 (f) frame 311 (g) frame 348 (h) frame 451

(i) frame 85 (j) frame 110 (k) frame 172 (l) frame 207

(m) frame 272 (n) frame 311 (o) frame 348 (p) frame 451

Figure 2.11: iGMM detection LAB 1 Video 1

2.5.2 Stopped people

Two different sequences are tested for stopped people, see figure 2.14 and 2.15. We note that
GMM does not handle this cases and the person disappears. Although the iGMM seems to
have a noisy detection, most of these noises are classified as shadows.

2.5.3 Camera motion

Camera motion is difficult to show. At a specific frame, each method reacts differently ac-
cording to its model. Then, a method supposed to handle motion can generate poor results
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(a) frame 128 (b) frame 207 (c) frame 228 (d) frame 285

(e) frame 342 (f) frame 368 (g) frame 376 (h) frame 418

(i) frame 128 (j) frame 207 (k) frame 228 (l) frame 285

(m) frame 342 (n) frame 368 (o) frame 376 (p) frame 418

Figure 2.12: iGMM detection MALL 1 video 3

on a single frame. This is the reason why, we test several frames in a row during camera
motion, see figure 2.16. For this test, we only draw foreground pixel for the iGMM method
and erase the shadows to make the observation clear. We note that iGMM detects noises, the
modification of the model make it less robust to camera motion.

2.5.4 Small objects

We have used video sequences from PETS 2004 to test our system on other videos. This
specific sequence offers an interesting challenge: the detection of left luggage, see figure 2.17.
We compare the detection results for temporal averaging, BDR, and iGMM. It is interesting
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to note that only BDR detects the bag left in the scene. However, BDR also detects a lot of
noises in the image due to sun light shinning through windows.

2.5.5 Complex scene

We further test several video sequences from PETS 2004, IBM dataset, PETS 2002, and PETS
2001.

PETS 2004 dataset is composed of several videos taken in a corridor of a shopping mall,
see figure 2.18. iGMM and BDR have similar results

Then, IBM dataset has many interactions between people and a complex background,
see figure 2.19. Once again results are similar for the two methods.

PETS 2002 dataset has a complex scene taken behind a window and filming small objects,
see figure 2.20. Here iGMM is less sensitive to noises than BDR.

Finally we tested videos from PETS 2001. This video is taken outdoor and observes both
pedestrian and cars, see figure 2.21. We observe that a car stopped for several hundred
frames disappears for iGMM while it remains detected for BDR, at frame 2000. Also there
are detected noises for BDR when the same car leaves.

2.5.6 Morphological filtering

It is interesting to note that we apply morphological filters on the final detection results.
We first realize an opening process that removes noises. Then, closing improves the regions
shape and fills the holes.

2.5.7 Conclusions

This section presents various tests. Several issues are studied to test the robustness of our
methods. These issues correspond to stopped people, camera motion, small objects, and
complex scenes.
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(a) frame (b) RGB (c) YUV

(d) Bayes (e) GMM (f) iGMM

Figure 2.13: Detection results using each method on LAB 1 video 1 frame 110

2.6 Conclusions

This chapter presents motion detection. We present and evaluate several methods.

First, frame differencing simply calculates the difference between consecutive frames
without background model. Although this method is very fast, it does not allow to entirely
detect moving objects and the detection is really noisy.

Secondly, temporal averaging builds a background model by calculating the average of
several frames. This method is also very fast and offers a full and accurate detection of the
objects. However there are several limitations due to camera motion and lighting changes.

Therefore we test approaches using a multi-modal model of the background.

[80] proposes an interesting method based on Bayes decision rules that classify fore-
ground and background pixels. This method offers very accurate detection of the moving
objects even when camera motion and lighting changes occur. However, the method is much
slower than the other methods.

Then, [136] proposes to model the background using a mixture of Gaussian distribution.
The original version of this algorithm is faster than [80]. Although the method can handle
light changes and camera motion, the method is very sensitive to shadows and stopped
objects disappear after a while.
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(a) frame (b) RGB (c) YUV

(d) Bayes (e) GMM (f) iGMM

Figure 2.14: Detection when a person stops for about 100 frames

Finally, an improved version of [136] is proposed. We modify the model to adapt the
number of selected Gaussian distributions, add a shadows detection module to remove
them, and modify again the model to handle people stopping in the scene. This method
offers accurate results and handles camera motion, light changes, shadows, and stopped
objects.

Furthermore, iGMM is about five times faster than BDR. This method has also limitations
in very complex environments, as BDR, but offers us the best compromise between quality
and speed.

It is interesting to note that in many video sequences, parts of the moving objects are
not detected. Detections tend to be noisy when there is textural similarity between moving
objects and background. Therefore a merging post-process is required in order to track each
person as one entity.
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(a) frame (b) RGB (c) YUV

(d) Bayes (e) GMM (f) iGMM

Figure 2.15: Detection when a person stops in a real environment
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(a) frame 173 (b) frame 175 (c) frame 177 (d) frame 179 (e) frame 181

(f) TA-YUV f:173 (g) TA-YUV f:175 (h) TA-YUV f:177 (i) TA-YUV f:179 (j) TA-YUV f:181

(k) GMM f:173 (l) GMM f:175 (m) GMM f:177 (n) GMM f:179 (o) GMM f:181

(p) BDR f:173 (q) BDR f:175 (r) BDR f:177 (s) BDR f:179 (t) BDR f:181

(u) iGMM f:173 (v) iGMM f:175 (w) iGMM f:177 (x) iGMM f:179 (y) iGMM f:181

Figure 2.16: Effect of camera motion
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(a) frame 915 (b) frame 954 (c) frame 990 (d) frame 1111

(e) TA-YUV f:915 (f) TA-YUV f:954 (g) TA-YUV f:990 (h) TA-YUV f:1111

(i) BDR f:915 (j) BDR f:954 (k) BDR f:990 (l) BDR f:1111

(m) iGMM f:915 (n) iGMM f:954 (o) iGMM f:990 (p) iGMM f:1111

Figure 2.17: Example of detection of small object: Left luggage, dataset PETS 2004
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(a) frame 125 (b) frame 180 (c) frame 230

(d) BDR f:125 (e) BDR f:180 (f) BDR f:230

(g) iGMM f:125 (h) iGMM f:180 (i) iGMM f:230

Figure 2.18: Example of detection in a shopping mall corridor, dataset Caviar 2004
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(a) frame 183 (b) frame 268 (c) frame 322

(d) BDR f:183 (e) BDR f:268 (f) BDR f:322

(g) iGMM f:183 (h) iGMM f:268 (i) iGMM f:322

Figure 2.19: Example of detection dataset IBM
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(a) frame 70 (b) frame 380 (c) frame 540

(d) BDR f:70 (e) BDR f:380 (f) BDR f:540

(g) iGMM f:70 (h) iGMM f:380 (i) iGMM f:540

Figure 2.20: Example of detection in a complex indoor scene, dataset Pets 2002
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(a) frame 500 (b) frame 600 (c) frame 800 (d) frame 1000

(e) frame 1500 (f) frame 2000 (g) frame 2300 (h) frame 2600

(i) BDR f:500 (j) BDR f:600 (k) BDR f:800 (l) BDR f:1000

(m) BDR f:1500 (n) BDR f:2000 (o) BDR f:2300 (p) BDR f:2600

(q) iGMM f:500 (r) iGMM f:600 (s) iGMM f:800 (t) iGMM f:1000

(u) iGMM f:1500 (v) iGMM f:2000 (w) iGMM f:2300 (x) iGMM f:2600

Figure 2.21: Example of detection in an outdoor video from PETS 2001
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Chapter 3

Object tracking

Introduction

This chapter presents object tracking. Object tracking aims at associating an identity to de-
tected regions in consecutive frames. These regions correspond to the same identified object
in different frames.

Objects are defined as anything of interest for further analysis. These objects can be:
boats on the sea, fish in an aquarium, vehicles on a road, flying planes, walking people, etc,
depending on the final application.

We want to build a tracking system that can be adapted in various contexts. However,
we have several constraints. First, our application requires a real-time analysis. Therefore
the tracking process must be fast enough to meet this constraint. Secondly, we note that our
motion detection process, presented in chapter 2, requires a fixed camera. Even though our
motion detection technique is robust to slight camera motion, an extra motion compensation
process would be required to handle moving cameras. Finally the object contour must be
precisely detected for further analysis of the objects’ shape.

The motion detection technique presented in chapter 2 satisfies these constraints:

• The method is fast: the processing of one frame takes 0.05 to 0.08 second.

• The detection requires a fixed camera: slight motions are handled by the method.

• The method is precise: detection is achieved at a pixel level and the method is robust
to noises.

Object tracking is a challenging task. We list several issues that have to be handled by
the tracking system:
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• Fast object relatively to the frame rate are hard to track since their position varies a lot
from one frame to the next. Then, in presence of multiple objects, the objects position
is not a relevant measurement and can lead to miss-match.

• Inhomogeneous trajectories can generate difficulties in the matching process because
several tracking algorithms assume the trajectories to be smooth.

• Deformable, or non-rigid, object are harder to track than rigid objects. These objects
appearance varies a lot in the same scene.

• Multiple objects increase the complexity of the matching process.

• Occlusions are a major issue in object tracking. Occlusions can occur between several
objects or between an object and the scene.

Figure 3.1: Motion detection results for LAB1 and MALL1 datasets

In this chapter, we first review previous works. Then, various object tracking methods
are presented. These methods are all based on the motion detection technique presented
in the previous chapter. Two examples of motion detection results are shown in figure 3.1.
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Motion detection is used at every frame or used to detect the entrance of objects that are
further tracked without information about the foreground.

We first present several existing methods based on: Connected component, Mean-shift,
Particle filtering, and Combined connected component and particle filtering.

Then we present our method. Based on multiple hypothesis of object appearance, we
build a multi-level tracking system. The core of this system uses regions local and global
information to match these regions over the frame sequence. Regions are first matched and
identified from one frame to the next. Then, objects are created and identified. These objects
correspond to higher-level instance of regions. Finally merges and splits are detected for
better handling occlusions. A functional diagram of the system is presented in figure 3.2.

3.1 State of the art

Tracking aims at matching detected regions over the frame sequence and identifying these
regions.

Detection and tracking often intersect because these two processes use the same tech-
niques. As in [53], we divide tracking methods into four categories. Tracking can be based
on regions, contours, features, or a model. We note that algorithms from different categories
can be integrated together.

3.1.1 Region-based tracking

Region based tracking identifies connected regions corresponding to each moving object in
the scene. Motion is usually detected using background subtracting methods.

[159] uses small blobs features to track a single person in an indoor environment. In
this method, human body is composed of several blobs corresponding to various body parts
such as head, torso, or limbs. Each pixel is assigned to a specific body part’s blob. Finally,
moving humans are tracked by tracking each blob.

[93] proposes a tracking method based on three levels: regions, people, and groups. Each
region is represented by its bounding box and regions can split and merge. A human is
composed of one or more regions and a human group consists of several people grouped to-
gether. Using the region tracking method and an individual color appearance model, track-
ing multiple people is achieved, even under occlusions.

[91] and [90] are two examples of region-based tracking applied to vehicles.

These methods offer good results on scenes with various objects. However, occlusions
can not be properly handled. Thus, these methods can not properly handle clutter back-
ground or objects interacting together.
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3.1.2 Contour-based tracking

Active contour based tracking represents objects by their outline, or bounding contours.
These contours are updated at every frames [9] [98] [39] [160]. These methods extract objects
shapes and obtain more effective description of objects than region-based method. [105]
detects and tracks multiple objects with a geodesic active contour objective function. [109]
uses an active contour model based on Kalman filter to track non-rigid objects. [56] explores
stochastic differential equations to describe complex motion models with deformable tem-
plate to track people. [73] and [91] have applied active contour to track vehicles

Active contour-based tracking represent objects more simply than region-based methods.
However, the tracking precision is limited to the contour level and automatic initialization
is challenging.

3.1.3 Feature-based tracking

Feature-based tracking achieves tracking by extracting various elements that are used to
describe the corresponding objects. These features are matched between frames. We distin-
guish two categories of features: global features and local features.

• Global features are centroids, perimeters, surface areas, color moments, [106], [127],
etc. [114] is an example of tracking using the centroid of the region’s bounding box.
Occlusions can be handled as long as the velocity of the centroids is distinguished
efficiently.

Several methods represent regions as points moving in the scene. To match these
points in the frame sequence, [148] and [131] use deterministic methods, while proba-
bilistic methods can be used such as Kalman filter [11] [125] and particle filter [57] [89].
We note that many researchers focused on particle filtering lately [169].

• Local features are line segments, curve segments, corner, interest points, [26], [91], etc.

We note that the presented features can be combined. [61] proposes a template based on
shape, texture, color, and edge features of the regions. The matching process is performed
by minimizing a feature energy function.

Feature-based tracking can handle multiple object tracking and local features can be
matched when partial occlusions occur.

3.1.4 Model-based tracking

Model-based tracking aims at matching projected object models to image data. These models
require prior knowledge and are usually produced off-line with manual measurements. We
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present two separated types of models: models for non-rigid objects tracking (human body)
and models for rigid objects tracking (vehicle).

3.1.4.1 Model-based human body tracking

These methods are based on three main steps: predict, match, and update. First, the pose of
the model is predicted for the next frame. Secondly, the model is synthesized and projected
into the image plane. Then, the similarity between the image data and the projected esti-
mate is calculated using a pose evaluation function. This function can be recursive or using
sampling techniques to end up with the correct pose and update the model.

There are three main difficulties:

The construction of human body model The human body model is the base of the tracking
method. The more complex it is, the more accurate the system will be and also the more
computationally expensive. We categorize four types of body models:

• Stick figure represents motion of head, torso, and limbs using sticks and joints. [67]
uses HMM to encode the model.

• 2-D contours models the human body using 2-D ribbons [64] or blobs [101].

• Volumetric model represents human body with elliptical cylinders [124], cones [150],
[31], [30], spheres, super-quadrics [134], etc.

• Hierarchical model can represent the body very accurately [112]: skeleton, ellipsoid
meatballs simulating tissues and fats, polygonal surface representing skin, and shaded
rendering.

We note that volumetric and hierarchical models are computationally expensive.

The representation of prior knowledge of motion models and motion constraints Hu-
man limbs and joints movement are strongly constrained. Thus, motion models of limbs
and joints are used to predict motion parameters [168] [23] or to recognize human behaviors
[18]. These motion models can be learned using HMM [18], minimum description length
paradigm [168], multivariate principal component analysis [132], hierarchical principal com-
ponent analysis [103], etc.

The prediction and search strategies There are four main types of search strategies: Dy-
namics, Taylor models, Kalman filtering, and stochastic sampling.
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Dynamical strategies use physical forces applied to each rigid part of the model. These
forces guide the minimization of the difference between the model and the image data [31].

Taylor models incrementally improve the estimated pose, using differentials of motion
parameters and image observations [84].

Kalman filtering uses motion parameters modeled by Gaussian [150] [65].

Stochastic strategies, such as Markov chain Monte Carlo [10] or Condensation algorithm
[58] [57], represent simultaneous alternatives hypotheses.

3.1.4.2 Model-based vehicles tracking

These methods are mainly based on 3-D wire-frame vehicle models [40]. [143] and [141]
constraint vehicles to move on the ground plane. Thus the pose estimation is simplified and
computational costs are reduced. [142] estimates the vehicle pose with a Hough transfor-
mation algorithm. [140] analyzes the 1-D correlation of the image gradients. [108] and [107]
propose a statistical Newton method to estimate the vehicle pose.

[162] uses edge points as features to match the 3-D model projection. [83] tracks vehicles
using improved extended Kalman filter and handles complex maneuver.

[72] also uses edges as features to match the 3-D projection. The maximum a posteriori
estimate of the vehicle position is obtained using Levenberg-Marquardt optimization. [75]
also bases his systems on image gradients. Virtual gradients are produced by spreading
Gaussian distribution around line segments. Assuming that the real gradient in an image
correspond to the sum of a virtual gradient and a Gaussian white noise, the pose parameters
are estimated using extended Kalman filter. [44] applies the same methods based on optical
flow.

Model based tracking is more robust than the other methods essentially due to the prior
knowledge integrated in the model. This tracking can obtain results under occlusions, han-
dles changes of orientation. However, the main disadvantages of this technique are the
construction of the model and the computational costs.

3.2 Evaluated approaches

This section presents four methods: Connected Component (CC), Mean-Shift (MS), Particle
Filtering with Mean-Shift weights (MSPF), and the combined Connected Component and
Particle Filtering to solve collisions (CCMSPF). These methods are some of the most widely
used and effective region-based and feature-based tracking methods.
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3.2.1 Connected components

This method is directly based on the motion detection output. For each frame, each detected
regions is added to a region list. For each region in the list, a Kalman filter is used to estimate
the location and size of the region in the next frame. Once the estimate is calculated for each
region of the previous frame, we look for the region, in the current frame, that is the closest
to the estimate. Closest regions are matched to the corresponding regions and are used to
update the region location and size. Once a region is matched for a certain amount of frames
T = 6, the region is validated and receives its proper identification.

This method only uses the location and size of each region and is therefore very fast. We
note that the longer an object is matched, the better the estimate is.

3.2.2 Mean-shift

The mean-shift algorithm is based on color information and is composed of 3 main phases
[27]:

• Once a moving region is detected, an initial color histogram is calculated over its
bounding box.

• This histogram is used to calculate the back projection over the image.

• In the result image, large connected areas with high intensities correspond to locations
that are similar to the original histogram. Therefore Mean-shift algorithm is used to
find the location and size of the matched object.

The distance calculation between two histograms is based on the Bhattacharyya coeffi-
cient. This coefficient general form is:

ρ(s) ≡ ρ[p(s), q] =
∫ √

pz(s) qz dz (3.1)

Where z represents the color of the model, with a density function qz. The candidate at
location s has the feature distributed according to pz(s)

We want to find the discrete location s with the associate density pz(s) that is the closest
to the model density qz.

The derivation of the Bhattacharyya coefficient from sample data involves the estimation
of the densities p and q. For these densities, we use the histogram formulation. q is estimated
from the m-bin histogram of the target model. p is estimated from the m-bin histogram of
the candidate at location y. Then the sample estimate of the Bhattacharyya coefficient is:
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ρ̂(s) ≡ ρ[ p̂(s), q̂] =
m

∑
u=1

√
p̂u(s) q̂u (3.2)

The distance between two distributions is defined as follow:

d(s) =
√

1− ρ[ p̂(s), q̂] (3.3)

We note that this distance is invariant to the scale of the target.

3.2.3 Particle filtering

Particle filtering use Monte Carlo method for on-line filtering [76]. Monte Carlo approxima-
tion of a distribution is a set of random samples [32]

X = {X(m), W(m)}m=1,...,M (3.4)

Where X(m) are particles paired with weights W(m). m indexes the set of M particles.
The density is approximated from X as:

p(X) ≈
M

∑
m=1

W(m)δ(X− X(m)) (3.5)

Where Dirac delta δ() is weighted with particles.

The algorithm for Sequential Importance Sampling (SIS) [7] is the core of the sequential
Monte Carlo methods. However, a bad choice of “importance density function” can rapidly
decrease the particle weights, leaving a few particles with low weights. This degeneracy
problem can be avoided by resampling particles, with resampling probability being propor-
tional to particles weight [42]. This process consists in eliminating particles with low weights
and multiplying the ones with higher weights.

The method using Sampling Importance Resampling (SIR) is achieved by resampling
and a choice of the “prior importance function” [32].

Π(Xt|Xt−1(m), y1:t) = p(Xt|Xt−1(m)) (3.6)
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This prior importance function reduce the effects of the measurements z from the calcu-
lations. The SIR filter with prior importance function has a reduced evaluation of weights.

Wt(m) ∝ Wt−1(m) p(yt|Xt(m)) (3.7)

This approach is also called bootstrap filter and is described in the following algorithm
[33]:

Initialization

• Sample N particles from initial distribution X0(m) ∼ p(X0) with m = 1, . . . , N.

• Set t = 0.

Importance sampling step

• Sample particles from importance function Xt(m) ∼ p(Xt|Xt−1(m)) with m = 1, . . . , N.

• Evaluate the importance weights with equation 3.7 Wt(m) = p(yt|Xt(m)) with m =
1, . . . , N.

• Normalize the importance weights.

Selection with resampling

• Resample with replacement N particles each particle Xt(m) is replaced with probabil-
ity equal to its importance weight Wt(m).

• Set t← t + 1 and go back to step 2.

Finally, the particles are propagated according to the importance distribution function
while weights are evaluated to reflect fitness of particles to observations yt. We note that the
initialization of the tracking is done on moving regions detected through motion detection.

3.2.4 Combined connected components and particle filtering

This method is based on connected components, see section 3.2.1. Motion detection is achieved
on every frame and connected regions are matched from one frame to the next using loca-
tion and size measurement and a Kalman filter. Kalman filter estimate the next position
of a region and can therefore detect collision between regions. When such a collision is de-
tected, the regions are tracked using the particle filtering technique presented in section 3.2.3.
We note that the positions and sizes of the objects are still updated and analyzed with the
Kalman filter and when the collision is over, objects are tracked with the connected compo-
nents technique.
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3.3 Proposed tracking process

3.3.1 Introduction

Based on motion detection, we want to match the detected connected regions over the frame
sequence. A region, or blob, is defined here as a connected surface considered as a fore-
ground area, see chapter 2. An overview of our system is presented in figure 3.2.

In this section, we first present the multiple hypothesis of the object appearance. Then,
we merge regions in order to obtain regions that better match actual people. We use various
types of merge to handle uncertainty. The core of our tracking system is the frame to frame
matching process. This process builds a descriptor for each region of a frame and matches
these descriptors to the previous frame regions’ descriptors. Regions are further identified
by propagating Ids across frames to matched regions. However, tracks can be lost and miss-
matches can occur. Therefore we build an object list that correspond to higher-level instances
of regions that handles lost tracks and miss-matches by using extra temporal information.
We finally detect merges and splits of these identified objects to better detect occlusions
between these objects.

Figure 3.2: Tracking system diagram

3.3.2 Multiple hypothesis

Our system is based on the motion detection technique presented in chapter 2. Even though
motion detection offers good results, we note that the algorithm can miss parts of an object,
or person, see figure 3.1.

In fact, a detected object can be covered by several disconnected regions. We also note
that two objects occluding each other are merged as a single connected region.

Thus we define three hypothesis concerning detected regions. A detected region can be:
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• A part of an object.

• An entire object.

• A group of objects.

We then have to cope with several cases concerning the appearance of the detected re-
gions.

3.3.3 Regions merge

To have regions that better match actual objects, we achieve a merging process, see figure
3.3. There are two separated parts in the merging process, first reliable merges are made,
then potential merges are considered. It is interesting to note that regions are represented by
their bounding box.

Figure 3.3: Diagram representing the merging process. Each step and the region list are shown.
The blue region represent the potiontial merge of A and B,C
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3.3.3.1 Relevant merge

The first step consists in detecting regions located inside other regions bounding box. Then
overlapping bounding boxes are detected and overlapping surface areas are calculated. If a
surface area is larger than a given value s, regions are merged, see figure 3.3.

After this process, regions better match actual persons.

3.3.3.2 Potential merge

This next process aims at achieving less reliable merge. Regions may correspond to the same
person.

Slightly overlapping regions First, regions with overlapping bounding boxes are detected.
These regions are then potentially merged.

Close by regions Then, distances between regions are calculated. If the distance is smaller
than a given value d1, regions are once again potentially merged.

Regions in the same vertical axis In a few cases, we notice that the motion detection fails
to correctly detect parts of a person. As we see on figure 3.1, textural similarity between the
person’s clothes and the background is important.

In order to handle this type of cases, we assume that a person is significantly taller than
wide. We note that this ratio depends on each person and on the camera view point. As a
consequence, two regions located on the same vertical axis might be considered as part of
the same person and then be "potentially" merged, see figure 3.3.

Specifically, potential merge occurs when the gravity center of the highest region is hori-
zontally located within the bounding box of the lower region and if the distance is not larger
than a given value d2.

3.3.3.3 Merge versus potential merge

The two types of merge have different effects on the matching process that follows.

When two regions are reliably merged, the two original regions become one merged
region. In other words, the two original regions are deleted and a new one is generated, see
figure 3.3.

However, when two regions are potentially merged, the two original regions are kept in
the list and a new merged region is generated, see figure 3.3. This new merged region has
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type P for easier notation. Since we are not sure about the reliability of these merges, we use
the following matching process to decide whether merging is relevant or not.

3.3.4 Frame to frame matching

In order to match regions, we first build a descriptor for each of them. Such a descriptor
must be filled with measurements that are discriminant and relatively stable across frames.
Furthermore, these measurements must allow us to match regions of different sizes and
shapes, to be consistent with our hypothesis. We are therefore interested in the location,
size, and color appearance of the regions.

The descriptor is composed of the region gravity centre position (xg, yg), size (h, w), po-
sition of the bounding box centre (xb, yb), surface area s, and first and second order color mo-
ments (R1, G1, B1, R2, G2, B2). The descriptor is then a vector of measurement x = x1, x2, ..., xn

with n = 13.

The regions’ matching is achieved by using a descriptor matching algorithm, similar to
[92], which works as follow.

We define two sets of regions S1 and S2. S1 corresponds to the previous frame and S2 to
the current one. Each set is composed of one or several regions. Two regions with descriptors
x ∈ S1 and y ∈ S2 are matched if and only if x is the most similar descriptor to y and vice-
versa, i.e.

∀y′ ∈ S2|y : sim(x, y) ≥ sim(x, y′) and

∀x′ ∈ S1|x : sim(y, x) ≥ sim(y, x′)
(3.8)

Where sim is the asymmetric similarity measure defined below. To calculate sim, each
component of the descriptor is treated independently. The similarity between the ith com-
ponent of x and y is equal to 1 if y ith component is the closest measurement to x ith compo-
nent. Otherwise, the similarity is equal to 0. Closest measurements have smaller Euclidean
distance.

simi(x, y) = 1 i f ∀y′ ∈ S2, simi(x, y) ≥ simi(x, y′)

0 otherwise
(3.9)

The overall similarity measure is defined as follows
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sim(x, y) =
n

∑
i=0

ωi simi(x, y) (3.10)

Where n is the dimension of the descriptor, defined above, and ωi is the weight of the
ith measurement. We choose to give the same weight ω0 = 1 to each measurement of the
descriptor. The calculation of sim(y, x) is analogous with the roles of S1 and S2 interchanged.

An interesting property of this calculation is that the influence of any single measure-
ment is limited to 1. In other words, no matter how large the distance is between the ith
measurement of two descriptors, the overall similarity measure will only lose 1.

Another major property of this algorithm is that measurements of different orders of
magnitude can feet together in the descriptor and are easily handled. For example, the value
of the surface area of a person is significantly larger than the value of its width.

Finally, since we define matches as the most similar regions from the first set to the second
one and vice-versa, the more regions are in both sets the harder it is to find a match. On the
contrary, the algorithm can match highly different regions when there are only a couple
regions in the sets.

3.3.5 Processing matches

Once the matching process is achieved, we have couples of matched regions. We first filter
these matches, then identify regions. Finally objects are identified, see figure 3.4.

We have to be aware that the system matches regions on each frame of videos that have
15 to 25 frames per seconds. With such a large amount of frames, we are sure to have miss-
match occurring. Thus, we need to achieve matching on several levels to handle the un-
certainty. We use objects to represent tracked regions. These identified objects use extra
temporal information and are not limited to two consecutive frames.

Figure 3.4: Diagram representing the processing of matches
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3.3.5.1 Matches filtering

First of all, tests are achieved on the list of matched regions. These tests aim at removing
sub-regions, i.e. regions that are a part of other matched regions. This case can occur when
a type P region is matched as well as regions that compose it.

Then, we test matched regions for merging. As we show in section 3.3.3, we achieve
relevant merge. In fact, in a few cases type P regions can be merged to other regions.

3.3.5.2 Regions identification

Regions are identified only if they are matched in the current frame. These matched regions
receive the identification of the region they are matched with. If this region is not identified,
we create an identity for the matched region. It is interesting to note that the identification is
propagated to sub-regions.

3.3.5.3 Objects identification

Once regions are identified, we compare each matched region with the list of tracked objects.
There are various cases:

• A matched region corresponds to an object and this object is corresponding to only
one region. The region is used to update objects information, such as its location, size,
surface area, color, etc.

• No object is corresponding to a matched region; this region can be a new object enter-
ing the scene or an old object that was lost, due to an occlusion for example.

In order to retrieve an object after a miss-detection or an occlusion, we reiterate the
matching process. However, we modify the descriptor by only keeping the measurements
that are invariant to displacement. In other words, we only keep the color and size informa-
tion and delete the location measurements in the descriptor. In fact, during an occlusion a
person keeps moving and rarely comes back to its exact first position at the beginning of the
occlusion.

Then, we require two sets of regions for the matching process, see section 3.3.4. The set
S1 is composed of every object and the set S2 remains the list of region detected in the current
frame. We keep all regions of the current frame and all objects to have a selective matching
and avoid matching regions that are not similar. If the region is matched to an inactive object,
we may have encountered an occlusion. Otherwise, a new object is created and filled with
the region’s information.
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3.3.6 Merge - split detection for occlusions handling

Handling occlusion is a tough challenge. We are under the constraint that a detected region
can either be a part of a person, a person or a group of people. Therefore, it is difficult
to detect the difference between a person merging and splitting into one to several tracked
regions and a group of people occluding each other: crossing, meeting, etc.

It is interesting to note that the process previously presented, see section 3.3.4, already
solves most occlusions. In fact, when an object disappears, during an occlusion for example.
As soon as this object reappears, our method can not find a match to the detected region.
Therefore, the algorithm tries to find a match with an old object, which disappeared.

However, some cases can be complicated and splits and merges detection offer us an-
other clue to identify occlusions.

3.3.6.1 Merge detection

Several regions are merging when these regions are considered as different identified regions
in the previous frames and then become one single region at the current frame. We remember
that a region is identified when it is matched.

For example, two regions are tracked A, B and a type P region C = A, B representing
the potential merge of these two regions is matched at the current frame. Then a merge just
occur, see figure 3.5.

Figure 3.5: Merge occur: A and B merge into C (in blue). Arrows link matched regions

3.3.6.2 Split detection

A region is splitting into several regions when a tracked region is not matched at the current
frame and only its sub-regions are matched. These sub-regions have same id.
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For example, one region of type P: C = A, B is not tracked anymore and two sub-regions
are matched at the current frame A and B, see figure 3.6.

Figure 3.6: Split occur: C (in blue) splits into A and B. Arrows link matched regions

3.3.6.3 Occlusion detection

We use some measurements to define the consistency of these splits and merges. First, we
filter out small objects that can not correspond to an entire person. Then, when a merge, or
split, occur we calculate the age of the concerned object(s).

In fact, when these events occur on a single person, they do not last for a long period
of time. Therefore, the regions splitting and merging should not be “old”. Moreover, when
two tracked people meet, they are usually tracked for a certain time before the encounter.
There is also a certain amount of time between the merge and the split. Based on these
measurements we can detect occlusions.

3.4 Evaluation and results

This section presents the evaluation of the presented tracking algorithms in various contexts.
We first test our algorithm and show some limitations. Then we compare all algorithms
on sequences with occlusions. We track vehicles for traffic monitoring and finally detect
meetings in a video-surveillance context.

3.4.1 Tests on our method

Our algorithm is performing very well on LAB and MALL datasets. The system can track
several objects simultaneously, is fast and accurate.

85



CHAPTER 3. OBJECT TRACKING

This first example shows the difference between the identification of regions and objects.
Even when frame to frame matching generates wrong results, higher level analysis allows
us to track a person correctly even in the presence of splits and merges, see figure 3.7.

The major difficulties come from occlusions. In many videos, several people interact
simultaneously. These people occlude one another. Our system detects these occlusions and
aims at correctly re-identify objects once the occlusion is over. This task is not easy, especially
under the constraint that detected regions can either be a part of a person, a person or a group
of person. The second example, see figure 3.8, shows a simple occlusion resulting in a split
at frame 125. This type of cases is well handled by our system.

However, limitations of our method are reached in the next example, see figure 3.9.
Around frame 170 and frame 250, one person is leaving when another enter the scene. Since
the two persons are merged together, the system track the two persons as a single one and
can not detect that one of them has left and was replaced by a new one.

We further note that the person with Id 6 switch to Id 2, in the same sequence. In fact, the
person split into several objects and back to one. In such a case, the lower Id value is printed.
Lower Id values correspond, in most cases, to older objects that tend to be more reliable. In
fact, we know that

• Object 2 has a set of regions indexes: 5 - 13 - 17 - 19 - 20

• Object 6 has a set of regions indexes: 10 - 22

• Split of regions Id: 10 - 17, at frame 187 the object age is 46

• Merge of regions Id: 22 - 20, at frame 204 the object age is 62

3.4.2 Comparative Tests

First, it is interesting to note that there is a major difference between our method and the
others:

• Our method tracks an object as soon as a corresponding region is matched in two
consecutive frames. In other words, when a moving area is detected in more than 2
frames, we can already track it as an object. Therefore, our method adapts quickly to
the scene but is more subject to noise.

• The existing methods require an object to be steady or have an homogeneous trajectory
for around 10 to 15 frames, in practice, in order to validate its appearance as an object.
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These tracking processes are not able to track objects in some videos. For example, only
our method is able to track object in the MALL datasets. There are several reasons: objects
are large, they generally do not stop, they do not always have homogeneous and straight
trajectories, and they often are not fully in the image.

3.4.2.1 Occlusions

We achieve various tests when occlusions occur. We use our datasets and videos from PETS
2006. We test several videos in each dataset, see figure 3.11, 3.12, 3.10, 3.15, 3.16, 3.13, and
3.14. As we can see, our method handles various types of occlusions.

Figure 3.10 shows an example of complete occlusion. Our algorithm handles the occlu-
sion. However, the other methods do not identify the second moving person before the
occlusion. The first person is correctly tracked by all the method. We note that the bound-
ing box of the tracked person is less accurate for the CCMSPF method due lighting changes
generating noises.

Figure 3.11 and 3.12 shows three partial occlusions. Our algorithm correctly tracks the
two persons on all occlusions. On the same figure, we note that CC offers poor results. Ids
change from one person to the other, tracks are lost several times. MS handles the two last
occlusions as well as MSPF and CCMSPF. However CCMSPF is, again, less precise. We note
that these methods do not track the objects soon enough to cope with the first occlusion.

Then, we test all methods on the PETS 2006 dataset, see figure 3.13, 3.14, 3.15, and 3.16.
The videos 7-4 and 7-3 are taken from two different locations in a train station.

Figure 3.13 and 3.14 show the results on video 7-4. Our method offers correct results and
manages the occlusion. We note that none of the other methods successfully track the two
persons. CC does not manage the occlusion and the one identified person loses its Id during
the occlusion. MS, MSPF, and CCMSPF keep track of the person.

Figure 3.15 and 3.16 show another occlusion occurring on video 7-3. All methods can
track the two objects before the occlusion. Our method, MS and CCMSPF handle the occlu-
sion. CC and MSPF miss-match the persons.

It is interesting to note that the CC method relies a lot on the Kalmann Filter. When an
object changes its trajectory, the method tend to detect the object on the same trajectory even
if the real person stops or switches direction, as we can see on figure 3.11.
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Finally this evaluation shows that our tracking algorithm can handle various types of
occlusions.

3.4.3 Traffic monitoring: vehicle counting

In this section, we evaluate our tracking algorithm on a different task. We want to track
vehicles on highways. There is ongoing research in this area of computer vision. The main
idea is to detect automatically abnormal behaviors, such as accidents or traffic jams for ex-
ample. Most systems are based on an object tracking process, and then vehicles trajectories
are analyzed to detect abnormal events [100].

3.4.3.1 Task description

We test various algorithms on a simple task: counting vehicles. We use two videos 1, see
figure 3.17. These videos are outdoor sequences filming motorways. The cameras are fixed
on top of poles and allow us to see couple of hundreds meters of road. In order to count
vehicles, we use our motion detection technique presented in chapter 2 and apply five track-
ing techniques to count all objects. Objects tracked for more than 30 frames are considered
reliable.

In order to avoid false detection, we block the motion detection on the top left part of the
video 2. In fact, we observe motion due to the video clock, as well as vehicles on the side
road.

3.4.3.2 Results

The results, in the table 3.18, present the number of vehicles tracked using each algorithm.
We also calculate the ground truth by hand. Then, we calculate the processing time of each
algorithm.

Although, recall and precision would be better measurements for the evaluation, the
number of tracked object already give us a reliable information regarding the number of
tracked objects, since all tracking process are based on the same detection.

It is interesting to note that none of the methods is able to detect more than 93% of the
vehicles because these videos are really challenging. Many occlusions occur due to the scene
geometry. There is a lot of traffic, cars overtake one another, trucks are occluding cars, etc.

We also note that the second video is more challenging than the first one. We see a part
of the road from the side and therefore complete occlusions are occurring more often. In

1ADACIS sarl and CETE sud-ouest provided the traffic sequences
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particular, a truck can occlude one or two lanes. Moreover, the lighting conditions are not
very good. The weather is cloudy and the road is dark. Thus, the motion detection process
reaches its limitations when grey car have a color very similar to the road. Such vehicles
are detected only when they are very close to the camera. On this video, we can observe
some camera motion as well as high lighting changes due to clouds passing. However the
camera motion is not large enough to generate too much noise and lighting changes are well
handled by the motion detection process.

Our method offers interesting results and we are able to count 93% and 87% of the ve-
hicles. Our method outperforms the other methods because they are not coping very well
with the noise in the motion detection. We remind that the other methods must detect and
track objects with homogeneous and smooth trajectories in order to validate these objects.

The motion detection is particularly noisy when vehicles are far away, due to their small
sizes and the constant occlusions. Also, the objects size increases, or decreases, exponen-
tially since they are going toward, or outward, the camera. Moreover, tracking many objects
simultaneously is challenging and increases uncertainty.

Finally, this evaluation shows that our method is efficient and able to successfully track
a dozen of objects simultaneously.

3.4.4 Video-surveillance: Meeting detection

This section presents a different type of application related to video-surveillance. We entered
the VAST challenge 2009 [1] that is a contest linked with the Visual Analytics Science and
Technology conference. Although this conference and challenge are in the video analytics
research field, one task of the challenge need a computer vision system. The team working
on this task was composed of three persons working in the computer vision field and two
persons working in the data visualization field.

Introduction

The goal of the task is to discover meetings at locations captured by a security camera. The
first goal is to provide a table of location, start time and duration of the meetings. Finally, we
have to identify any events of potential interest in the video. Activities must be described as
well as why the event is of interest. The data is composed of two videos of five hours each
taken with a Pan-Tilt-Zoom (PTZ) camera. The outdoor scene is shot from a street corner
and pans between four locations.

To solve the task, we build a system composed of two main parts: a computer vision sys-
tem and a visualization system. The computer vision system uses an adaptive background
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mixture model for motion detection. Then, objects are tracked based on regions and features.
The results of this phase are passed as input to the visualization system. In the visualization,
the position of an object in a given frame is mapped to a node, and nodes representing the
same object in adjacent frames are connected with edges. Automatic filters eliminate com-
mon motions from the data. The visualization system helped us discover several meetings
in the data.

In this section we only describe the computer vision system. This system is composed of
three modules: video preprocessing, motion detection, and object tracking.

3.4.4.1 Video pre-processing

The camera films around 15 seconds each location then moves to the next one. Thus, we
preprocess the video to divide it into its four locations by determining when motion on the
overall image begins and ends. SVM classifiers, using libSVM package [22], verify that the
camera has changed locations. For each frame, we extract an edge histogram descriptor, de-
fined in the MPEG-7 standard, and provide it as input to the SVM classifier which outputs
the camera position. An edge Histogram divides an image into a 4x4 grid and computes
the histogram of five different edge orientations in each of the grid cells, leading to a 80-
dimensional feature vector. This descriptor is appropriate for the task of determining the
camera position, because the main edge orientation is independent of the changes in illumi-
nation and weather condition in the videos, as opposed to color or texture descriptors.

It is also interesting to note that the video encoding is not of good quality. We can see the
video freezing often for several frames, especially when large motion occurs. Therefore, we
detect still frames and filter them out when we are tracking objects. Then we avoid having
objects detected at the exact same location for several frames. Figure 3.20 represents the
functional diagram of the system.

3.4.4.2 Motion detection

Motion detection is achieved by using the Improve Gaussian Mixture Model described in
chapter 2.

In order to cope with the camera location shifting, we generate four background models,
one for each view. Having these four backgrounds allows us to improve the detection of the
moving objects especially in the first seconds of video shooting a new location.

It is interesting to note that the motion detection process is also used to detect camera
changing location. Camera motion is detected when large areas of motion are detected on
the overall image, for several frames. When such an event occurs, the current background
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model is not updated anymore and we wait for the motion to stop to detect the new view
and use the next background model.

3.4.4.3 Object tracking

The object tracking is achieved as described in the section 3.3.

Then, the object tracking process generates a list of moving objects in each view. How-
ever, these objects can correspond to car or pedestrian. Our task aims at detecting meeting
between people. Thus, we want to filter out all vehicles in order to give filtered information
to the visualization system.

To improve the object list, we manually build one mask for each of the four locations, us-
ing the video. These masks can help identify the object in the scene. There are four different
types of areas that can be encoded on a pixel of the mask: road where cars mainly appear,
sidewalk where pedestrians mainly appear, crosswalk where both pedestrians and cars can
appear, and building where nothing of interest should appear.

The computer vision system generates the input used by the visualizations. For every
detected object, the system records the frames in which the object was observed and the
object’s descriptor used for the tracking process. Also, the module adds the camera location
as well as the location type.

3.4.4.4 Results

Our computer vision system gives good results, considering the video data is challenging.
We are tracking relatively small pedestrians, and the data is very large and moderately noisy.
Additionally, we are constrained by a limitation of our technique where we can not distin-
guish two objects when they occlude each other. However, it is possible to detect these
occlusions by finding major regions that fuse or divide.

The visualization system use objects trajectories and information to filter out irrelevant
objects such as cars, noises detected on buildings, small objects, and objects with standard
trajectories. At the end, an operator mainly observes objects stopped or wandering around
the same location as well as objects having uncommon trajectories. The operator can see
meetings between two objects stopping close to one another for some time and leaving.

3.5 Conclusions

This chapter presents and compares several object tracking approaches. We propose a sys-
tem based on multiple hypothesis that achieves tracking using multiple level analysis. Our
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system can track several objects simultaneously, is able to track various types of objects (hu-
man, vehicles), is able to track objects in outdoor and complex scenes, and is robust to several
types of occlusions.

To conclude on our system, having a method based on motion detection is both a major
advantage and disadvantage. The advantage is that motion detection offers very accurate
detection of the objects contour. The disadvantage comes from the fact that motion detection
only gives us binary information: motion is detected of not. Therefore, when two objects are
occluding each other, they are detected as a single one.

Finally, tracking outputs are information and identification of each moving object at ev-
ery frame of the sequence. Based on this information, we can analyze the behavior of each
moving object in the scene.



3.5. CONCLUSIONS

(a) Objects - f 53 (b) frame 89 (c) frame 95 (d) frame 97

(e) Regions - f 53 (f) frame 89 (g) frame 95 (h) frame 97

(i) Objects - f 155 (j) frame 162 (k) frame 169 (l) frame 185

(m) Regions - f 155 (n) frame 162 (o) frame 169 (p) frame 185

Figure 3.7: Tracking results for a video taken at the MALL. The first and third rows represent
objects Ids, while the other rows correspond to regions
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(a) frame 39 (b) frame 62 (c) frame 104

(d) frame 124 (e) frame 125 (f) frame 126

(g) frame 147 (h) frame 160

Figure 3.8: Tracking results for MALL 2 video 1, using our methods
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(a) frame 105 (b) frame 124 (c) frame 140 (d) frame 141

(e) frame 172 (f) frame 180 (g) frame 195 (h) frame 198

(i) frame 199 (j) frame 204 (k) frame 205 (l) frame 221

(m) frame 236 (n) frame 248 (o) frame 251 (p) frame 278

Figure 3.9: Tracking results for MALL 2 video 3, using our methods
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(a) Ours - frame 53 (b) Ours - frame 63 (c) Ours - frame 64 (d) Ours - frame 75 (e) Ours - frame 76

(f) CC - frame 55 (g) CC - frame 59 (h) CC - frame 60 (i) CC - frame 65 (j) CC - frame 75

(k) MS - frame 50 (l) MS - frame 60 (m) MS - frame 70 (n) MS - frame 75

(o) MSPF - frame 55 (p) MSPF - frame 60 (q) MSPF - frame 65 (r) MSPF - frame 70 (s) MSPF - frame 75

(t) CCMSPF - f 55 (u) CCMSPF - f 60 (v) CCMSPF - f 65 (w) CCMSPF - f 70 (x) CCMSPF - f 75

Figure 3.10: Tracking results for LAB 3 video 5, using various methods
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(a) Ours - frame 115 (b) Ours - frame 116 (c) Ours - frame 123 (d) Ours - frame 164 (e) Ours - frame 165

(f) Ours - frame 196 (g) Ours - frame 204 (h) Ours - frame 205 (i) Ours - frame 220 (j) Ours - frame 221

(k) CC - frame 100 (l) CC - frame 117 (m) CC - frame 131 (n) CC - frame 132 (o) CC - frame 146

(p) CC - frame 169 (q) CC - frame 198 (r) CC - frame 217 (s) CC - frame 235 (t) CC - frame 244

(u) MS - frame 100 (v) MS - frame 120 (w) MS - frame 128 (x) MS - frame 129

(y) MS - frame 150 (z) MS - frame 184 () MS - frame 215 () MS - frame 240

Figure 3.11: Tracking results for LAB 3 video 4, using Our, CC, and MS methods
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(a) MSPF - frame 121 (b) MSPF - frame 128 (c) MSPF - frame 129 (d) MSPF - frame 150 (e) MSPF - frame 167

(f) MSPF - frame 175 (g) MSPF - frame 180 (h) MSPF - frame 200 (i) MSPF - frame 215 (j) MSPF - frame 242

(k) CCMSPF - f 100 (l) CCMSPF - f 116 (m) CCMSPF - f 132 (n) CCMSPF - f 133 (o) CCMSPF - f 150

(p) CCMSPF - f 166 (q) CCMSPF - f 200 (r) CCMSPF - f 215 (s) CCMSPF - f 230 (t) CCMSPF - f 242

Figure 3.12: Tracking results for LAB 3 video 4, using MSPF and CCMSPF methods
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(a) Ours - frame 227 (b) Ours - frame 253 (c) Ours - frame 254 (d) Ours - frame 277

(e) Ours - frame 287 (f) Ours - frame 288 (g) Ours - frame 289 (h) Ours - frame 321

(i) CC - frame 140 (j) CC - frame 227 (k) CC - frame 261 (l) CC - frame 262

(m) CC - frame 276 (n) CC - frame 296 (o) CC - frame 297 (p) CC - frame 328

(q) MS - frame 140 (r) MS - frame 227 (s) MS - frame 263

(t) MS - frame 274 (u) MS - frame 297 (v) MS - frame 330

Figure 3.13: Tracking results for PETS 2006 video7-4, using Our, CC, and MS methods
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(a) MSPF - frame 162 (b) MSPF - frame 225 (c) MSPF - frame 263

(d) MSPF - frame 273 (e) MSPF - frame 297 (f) MSPF - frame 330

(g) CCMSPF - f 230 (h) CCMSPF - f 261 (i) CCMSPF - f 262 (j) CCMSPF - f 274

(k) CCMSPF - f 285 (l) CCMSPF - f 286 (m) CCMSPF - f 298 (n) CCMSPF - f 331

Figure 3.14: Tracking results for PETS 2006 video7-4, using MSPF, and CCMSPF methods
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(a) Ours - frame 120 (b) Ours - frame 153 (c) Ours - frame 154

(d) Ours - frame 179 (e) Ours - frame 180 (f) Ours - frame 223

(g) CC - frame 137 (h) CC - frame 145 (i) CC - frame 147 (j) CC - frame 154

(k) CC - frame 164 (l) CC - frame 178 (m) CC - frame 184 (n) CC - frame 195

(o) MS - frame 115 (p) MS - frame 146 (q) MS - frame 147 (r) MS - frame 155

(s) MS - frame 164 (t) MS - frame 173 (u) MS - frame 184 (v) MS - frame 233

Figure 3.15: Tracking results for PETS 2006 video7-3, using Our, CC, and MS methods
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(a) MSPF - frame 110 (b) MSPF - frame 146 (c) MSPF - frame 147 (d) MSPF - frame 155

(e) MSPF - frame 161 (f) MSPF - frame 176 (g) MSPF - frame 183 (h) MSPF - frame 197

(i) CCMSPF - f 110 (j) CCMSPF - f 147 (k) CCMSPF - f 157 (l) CCMSPF - f 168

(m) CCMSPF - f 179 (n) CCMSPF - f 218

Figure 3.16: Tracking results for PETS 2006 video7-3, using MSPF and CCMSPF methods
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(a) video 1 (b) video 2

Figure 3.17: Images from video 1 and 2, used for traffic monitoring

Figure 3.18: Table relating the number of tracked objects and the execution time on two different
sequences with five different methods
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Figure 3.19: View of the four locations

Figure 3.20: Diagram of the video-surveillance system
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Chapter 4

Human activity analysis

4.1 Introduction

The object tracking system, previously presented, identifies moving objects in the scene at
every frame. Using these data, we can look for measurements that can help determine the
behavior of these objects. This section aims at analyzing objects behavior according to a
behavior model. The different actions can be detected using simple measurements from the
object tracking process or higher level information.

For our application, we are especially interested in detecting the interest of a customer
into a product as well as actual interactions between a customer and products of the point
of sale.

First, we present the behavior model composed of six states. Then, we focus on the inter-
act state and present the various methods used to detect this state. We further recognize the
states and evaluate the various methods presented. An overview of the behavior recognition
process and the high-level analysis is presented figure 4.1

Figure 4.1: Diagram of the behavior recognition process
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4.2 State of the art

This section present the previous works in human action recognition (HAR) and human
behavior understanding (HBU) that are two areas of computer vision that are close one to
another. HAR generally aims at recognizing simple actions that are achieved by one or two
people, such as waving, jogging, picking up a phone, hugging, etc, in challenging contexts,
like movies or video clips from the Internet. HBU is a more generic term and is often related
to video-surveillance. HBU aims at detecting events occurring with several people, such as
meetings, fights, or crowd analysis.

4.2.1 Human behavior understanding

Understanding behavior corresponds to the classification of time varying feature data, i.e.,
matching an unknown test sequence with a group of labeled reference sequences that repre-
sent typical behaviors. Then, behavior understanding is about learning reference behaviors
from training samples and selecting training and matching methods that cope with small
variations of the feature data [13]. We present major techniques for behavior understanding
in the following sections.

4.2.1.1 Dynamic time warping (DTW)

DTW is a template based matching technique, widely used in speech recognition. This
method is simple and robust, and can be used to match human movement patterns [139].
For example, [14] matches a test sequence with a deterministic sequence of states to rec-
ognize human gestures, using DTW. Even if the time scale between a test sequence and a
reference sequence is inconsistent, DTW can still establish matching as long as the time or-
dering constraints are respected.

4.2.1.2 Finite state machine (FSM)

A FSM is made of states and transition functions between them. The transition functions
are the most important feature of a FSM. The states represent the reference sequence that
matches the test sequence. [157] analyzes the explicit structure of natural gesture with no
learning involved. [19] builds a handcraft deterministic FSM to describe vehicle behaviors.

4.2.1.3 HMMs

HMM is a stochastic state machine that allows analysis of spatio-temporal varying data [17].
HMM is composed of two main steps: training and classification. Concerning training, a
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number of state transitions must first be specified. Then the output probabilities are op-
timized so that the generated symbols correspond to the observed image features of the
examples. During the matching process, the probability with which a particular HMM gen-
erates the test symbol sequence corresponding to the observed image feature is computed.
HMM is a widely used method since it generally outperforms DTW. [135] is an example of
use of the HMM for the recognition of sign language. [102] compares HMM to coupled hid-
den Markov models (CHMM) to model people behaviors and shows that CHMMs are more
efficient and accurate than HMMs.

4.2.1.4 Time-delay neural network (TDNN)

TDNN is another approach to analyze time-varying data [163] [94]. In TDNN, delay units
are added to a general static network, and some of the preceding values in a time varying
sequence are used to predict the next value. Neural network is even more efficient when
large amount of training data are available.

4.2.1.5 Syntactic techniques

Syntactic approaches come from the area of pattern recognition. For example, [16] uses
a non-probabilistic grammar to recognize sequences of discrete behaviors. [59] presents a
probabilistic syntactic approach that detects and recognizes temporally extended behaviors
and interactions between multiple agents. Here, the recognition problem is divided in two
levels. The lower level uses a standard probabilistic temporal behavior method, as HMMs.
The second level is a stochastic context-free parser that uses the output of the lower level.
The grammar and parser provide longer range temporal constraints, disambiguate uncer-
tain low-level detection, and allow the inclusion of prior knowledge about the structure of
temporal behaviors.

4.2.1.6 Non-deterministic finite automaton (NFA)

[151] uses NFA as a sequence analyzer. In fact, NFA is simple, instantaneous and purely
non-deterministic. [151] recognizes multiple object behavior on behavior driven selective
attention.

4.2.1.7 Self-organizing neural network (SONN)

Compare to the other methods, SONN is suited for behavior recognition when objects have
unconstrained motion.
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[63] describes objects motion by a sequence of flow vectors, each vector is representing
the position and the velocity of the object in the image. Then, a statistical model of the
object trajectories is created with two competitive learning networks connected with leaky
neurons. [138] improves this model by introducing a feedback to the second network.

[104] applies a Kohonen self organizing feature map to find the flow vector distribution
patterns and classify objects trajectories as normal or abnormal.

4.2.2 Human action recognition

Human action recognition aims at recognizing a set of specific actions in videos. Such videos
can be extracted from movies, Internet clips, or video surveillance. Existing work can be
separated in three categories

• Human model based methods use a full 3-D or 2-D model of human body parts. Action
recognition is achieved using information on body parts pose and motion.

• Holistic methods use knowledge about the localization of humans in video and learn
an action model from global body motion, without any notion of body parts

• Local feature methods only use descriptors of local regions in a video. No prior knowl-
edge about the position of human or its limb is given.

Since our tracking system produces information regarding the localization and contour
of the global human bodies without human model, only holistic methods can be applied on
our system. Therefore, we present Holistic methods.

Holistic methods use the global body structure and its dynamics to represent human
actions [114]. In fact, given a region of interest centered on the human body, global dynamics
are discriminative enough to characterize human actions. Holistic approaches are much
simpler than model based methods, since they only model global motion and appearance
information. Thus, the computation is generally more efficient and robust.

We roughly divide holistic methods into two categories: methods based on shape masks
or silhouette information and methods based on optical flow and shape information.

4.2.2.1 Shape mask and silhouette based methods

[161] is one of the first proposing such a method. The system computes a grid over the
silhouette and calculates the ratio of foreground to background pixels. Then, training and
testing is achieved using HMMs.
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[13] uses shape masks from difference images to detect human actions and introduce the
notion of temporal templates for action recognition. The system uses motion energy im-
ages (MEI) and motion history images (MHI). Specifically, MEIs are binary masks indicating
regions of motion, and MHIs weight these regions according to the moment they occurred.

Recently, [158] proposes to recognize human actions based on accumulated motion im-
age.

[12] and [43] create an action model based on space-time shapes from silhouette infor-
mation. The silhouette is obtained by background subtraction. Then, features such as local
saliency, action dynamics, shape structure, and orientation are extracted from the silhouette.
These features are used to calculate an action descriptor on sets of 10 frames.

[166] uses contour information to obtain spatio-temporal shapes [12]. Actions are repre-
sented by sets of characteristic points (such as saddle, valley, ridge, peak, pit points) on the
surface of the shape.

[154] represents actions sequences as vectors of minimum distance between silhouettes
in the set of examples and in the sequence. Another measurement is added to silhouette
information: Chamfer distance is calculated between silhouette examples and edge infor-
mation contained in test sequences. Then, Classification is achieved with Bayes classifier
with Gaussians modeling classes.

[167] computes a motion context descriptor over consistent regions of motion by using
a polar grid. Each cell of the grid is described with a histogram over quantized SIFT [85].
Classification is achieved using support vector machine (SVM) [20] and probabilistic latent
semantic analysis (PLSA) [49].

It is interesting to note that Silhouettes are a popular representation for surveillance ap-
plications [46], [53], and [130]. Since cameras are generally fixed, background subtraction
can be applied to compute silhouette information. Action such as running, walking, carry-
ing backpacks or large objects can be recognized. [118] uses a human tracker with camera
motion estimation in order to cope with challenging data.

Silhouettes provide interesting information for action recognition. However, they are
difficult to compute when clutter, camera motion, or occlusion occur. Moreover, they only
describe the outer contours of a person and lose discriminative power for actions with self-
occlusions.

4.2.2.2 Optical flow and shape based methods

[114] is the first to propose a human tracking framework with an action representation using
spatio-temporal grids of optical flow magnitudes. By matching reference motion templates
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of known periodic actions, such as walking, running, swimming, and skiing, the actions can
be recognized.

[34] tracks soccer players and compute a descriptor on the players silhouette using blurred
optical flow. The descriptor separates x and y flow measurements as well as positive and
negative components. Further tests are achieved on tennis and ballet sequences.

[36] uses the same template and uses a two-layered AdaBoost [38] variant to classify the
data. First, intermediate features are learned by selecting discriminative pixel flow values
in small spatio-temporal blocks. The final classifier is then learned from a all previously
accumulated intermediate features.

[123] uses spatio-temporal regularity flow information. Then, the system learns cuboid
templates by aligning training samples via correlation. The classification is achieved by
correlating test sequence with the learned template with generalized Fourier transform.

[68] computes spatio-temporal Haar features on optical flow components using an inte-
gral video structure. During learning, a discriminative set of features are chosen to optimally
classify actions, which are represented as spatio-temporal cuboidal regions. The classifica-
tion is achieved with a sliding window approach each position is classified as containing a
particular action or not.

[86] presents a method purely based on shape information. This system tracks soccer or
ice-hockey players and describe each frame with histograms of oriented gradients. Then,
PCA is used to reduce dimensionality and HMMs classify actions.

[128] combines optical flow information and Gabor filter responses in a human-centric
framework: both types of information are weighted and concatenated. PCA over all pixel
values is applied to learn the most discriminative feature information

[79] proposes to localize drinking actions in movies. This system combines a set of ap-
pearance and motion features. Appearance is represented by histograms of oriented gradi-
ents and motion by histograms of optical flow. The system pre-filter possible action localiza-
tions with a human keypose detector trained on keyframes of the action.

[54] presents an approach based on multiple instance learning that cope with imperfect
localizations of humans. The system uses histograms of oriented gradients, foreground seg-
mentation, and motion history images as features. Results are presented on simple actions
in crowded sequences and in challenging data recorded in a shopping mall. We note that
this paper presents the only system detecting actions in a shopping setting.

Holistic approaches are suitable for action recognition in realistic video data. We fur-
ther note that holistic representations are in general not invariant to camera view point and
certain parts of the body might not be visible in the image. However, humans’ localization
reduces the complexity of detecting actions.
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4.3 Proposed behavior recognition approaches

Introduction

Based on the object tracking process, see chapter 3, we want to characterize the behavior of
these objects.

First, we present our behavior model that is composed of six states. These states rep-
resent the actions of interest for our application. Then, we focus on the “interact” state
detection and description. The first approach detects the “interact” state deterministically.
Then several descriptors are used to describe this state. The descriptors are based on local
spatio-temporal templates or on interaction measurements. We further recognize all states
and organize them in a finite state machine. We note that the descriptors of the “interact”
state are recognized with support vector machines. A functional diagram is represented
figure 4.1.

4.3.1 Behavior model definition

This section presents our model that defines interesting human behaviors while shopping.
At a point of sale, customers walk around products, look at prices, pick up products, etc. We
create six states that correspond to the current behavior of a person, or object. By recognizing
these states at every frame, we generate the chain of states that can be used to describe a
scenario that the person plays.

• Enter: A new person appears in the scene.

• Exit: The person leaves the scene.

• Interested: The person is close to products, i.e. possibly interested.

• Interacting: The person interacts with products, is grabbing products.

• Stand by: The person is in the scene and not close to any product area or image bound-
ary. This person can be stopped or walking around products.

• Inactive: The person has left the scene.

4.3.2 Interaction detection and description

Introduction

We keep in mind that we want to build a real-world application. We first decide to create a
simple software system where an operator can fill in the final system with a priori knowledge
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about the scene. This software connects to a camera and allows a person to manually define
the product areas within the image. The operator can also define the size of a person’s hand

The second idea is to avoid a long training phase in the installation of our final system.
We test various methods requiring training or not. At any time, we avoid long training
phases by only using a few sequences to train our system.

In this section, we first present a deterministic method to detect the “Interact” state. Then,
we deal with various probabilistic description of this state.

4.3.2.1 Deterministic detection

Since we know where products heaps are located, we classify detected regions depending
on the location of their gravity center. If the gravity center of a region is located on a product
area, the region is considered as products that are removed from the products heap, probably
taken by a customer. Otherwise, the region should belong to a customer.

Detecting “products taken” corresponds to relevant information. However, such event
occurs once the action is done and the customer is likely to be leaving.

Customers behavior is usually to think, look at the price, and then take a product. We
want to know what they are interested in as soon as possible. Therefore, we detect customers
occluding interest areas. Specifically, tracked object are considered as customer in the scene
if they do not belong to a product area. At some point, a part of the customer can be detected
as covering an interest area. When a surface that is larger than a theoretical hand size is de-
tected, then a new event concerning the customer behavior is detected: the customer is about
to grab a product. We remind that the hand size is known a priori through the initialization
phase.

Finally we detect the “Interact” state when a customer is about to grab products, occlud-
ing a product area, or when a customer is close to a product area in which products are
moved or removed: motion is detected in a product area.

4.3.2.2 Probabilistic description

The measurement presented above corresponds to direct interactions with products areas
and is detected in a deterministic manner. However, we can represent interactions with
products in a probabilistic way.

While grabbing a product, a person first reaches out with its arm, then grasps a prod-
uct, and finally take the product. These different phases in the “product grabbing” event
correspond to observable local motion of the person. Following the idea that similarity
between various motions can be identified through spatio-temporal motion description, a
corresponding descriptor has to be composed of sets of features sampled in space and time
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[146] [34]. We further present various spatio-temporal descriptions of the objects motion to
recognize “product grabbing event”. These descriptors are based on motion history image
(MHI), accumulated motion image (AMI), local motion context (LMC), interaction context
(IC), and combined LMC and IC (MI).

Motion history image MHI is a temporal template used as model for actions [13]. MHI
offers information concerning a person shape and the way it varies along a local period of
time. We aggregate a sequence of foreground objects masks, scaled to a standard size of
120x120 pixels, see figure 4.2. MHI is computed as follows:

MHI(x, y) =
1
T

T

∑
t=1

I(x, y, t) (4.1)

Where I(x, y, t) is the pixel value of the image sequence I at position (x, y) and at time t.
T is the time interval used to calculate the MHI, we choose T = 15 .

We define two energy histograms by projecting MHI values along horizontal and vertical
axis [158]. These energy histograms are calculated as follows:

EHh(i) =
W

∑
j=1

MHI(i, j), i = 1, . . . , H (4.2)

EHv(i) =
H

∑
i=1

MHI(i, j), j = 1, . . . , W (4.3)

Where H and W are relatively the height and width of the scaled image. We have H =
W = 120. These two energy histograms are used as a 240 (120x2) dimensional descriptor to
recognize interactions.

Accumulated motion image AMI [158] was inspired from MHI and Motion Energy Image
(MEI) [13]. As we see in the previous section, MHI use the entire silhouette. However, only
areas including changes are used to generate the AMI that is defined as follows:

AMI(x, y) =
1
T

T

∑
t=1
|D(x, y, t)| (4.4)
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Where D(x, y, t) = I(x, y, t)− I(x, y, t− 1)

We note that the image difference D(x, y, t) is calculated between two scaled masks and
we keep T = 15 , see figure 4.2. We calculate the same energy histograms presented in the
previous section that are used as descriptor (240 dimensions) to recognize interactions.

Figure 4.2: Diagram representing the MHI and AMI generation

Local motion context We then choose to describe motion using pixel-wise optical flow [34].
Since optical flow is not very accurate, we use histograms of features over image regions.
Such a representation is tolerant to some level of noise, according to [146].

Local motion: first, each person’s mask is scaled to a standard size of 120x120 pixels,
while keeping aspect ratio. Then, the optical flow is computed using Lucas Kanade algo-
rithm [87]. The result of this process is two matrices with values of motion vectors along x
and y axis. We separate negative and positive values in the two matrices, and obtain four
matrices before applying a Gaussian blur to reduce the effects of noises.

Silhouette: a fifth matrix, representing the person’s silhouette, is computed from the
scaled mask.

Data quantization: we reduce the dimensionality of these matrices to filter noises and
save computation time. Each matrix is divided into a 2x2 grid. Each grid cell gets its values
integrated over an 18-bin radial histogram (20 degrees per bin). Matrices are now repre-
sented by a 72 (2x2x18) dimensional vector.

Temporal context: to take into account temporal information, we use 15 frames around
the current one and split them in three sets of 5 frames: past, current, and future. After
applying Principal Component Analysis (PCA) on each set’s descriptors, we keep the first
50 components for the current set, while we only keep the first 10 components for the past
and future sets. We follow the intuition that local motion should be represented in better
detail than more distant ones. The temporal context descriptor possesses then 70 (10+50+10)
dimensions.
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The final descriptor is composed of 430 (72x5+70) dimensions, see figure 4.3.

Figure 4.3: Diagram representing the combined LMC and IC descriptor

Interaction context This last descriptor is based on interactions with product areas. We use
six measurements calculated as follow:

• The person’s surface covering a product area.

• A Boolean that is true when this covering surface is bigger than a theoretical hand size
or when a person is connected to a product area and there is motion detected on this
area.

• The surface of the person.

• The height of its bounding box.

• The position of the bottom of the bounding box along y axis.

• The position of the top of the bounding box along y axis.
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The first measurement increases when a customer is reaching out before taking a product.
The second measurement detects motion in products areas. In fact, when a product is taken
motion is detected where the product is missing. Furthermore, the measurements related to
the height and position of the bounding box have meaningful variations as a person reaches
out for products. The surface tends to increase as a person grasps a product, when products
are big enough. These measurements fill the interaction context descriptor that possess 90
(6x15) dimensions, because we keep each measurement of the 15 frames around the current
frame.

After running some tests, we decide to combine the local motion context and the interac-
tion context description into one descriptor of 520 (430+90) dimensions, see figure 4.3.

4.3.3 Behavior recognition

4.3.3.1 States recognition

This section presents the behavior recognition process. Based on the behavior model, we
detect the six states. Using object tracking and higher level information, for each frame, the
state of each object has to be identified among the six predefined states:

• Enter is detected when a new person is detected and is connected to an image bound-
ary.

• Exit is detected when a previously tracked person connects to an image boundary.

• Interested is detected when a person’s contour connects a product area.

• Stand by is detected when a person is not connected to a product area or an image
boundary. The person is further classified as moving or not.

• Inactive is detected when the system loses track of a person. This event mostly happens
when a person leaves the scene, or is occluded by something in the scene or another
person.

• Interact is detected deterministically, as in section 4.3.2.1, or using SVMs [22] on one of
the presented descriptors, see section 4.3.2.2.

4.3.3.2 Support vector machine

SVM is a supervised learning method that classifies data. First, there are two phases in
the data classification: training and testing. The data corresponds to several instances. An
instance is composed of a “target value” and several “attributes”. In our case, the target
value is 0 or 1 depending if a product grabbing event, i.e. “Interact” state, occurs or not.
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The attributes correspond to each value of our descriptor. SVMs create a model that predicts
target value from attributes, by solving the following optimization problem.

minw,b,ξ
1
2

wTw + C
l

∑
i=1

ξi (4.5)

with yi(wTφ(xi) + b) ≥ 1− ξi and ξi ≥ 0

Where yi are target values, xi are the attributes, ξi represent the error in the training set.
The vector w and the scalar b are the parameters of the hyper-plane. C > 0 is the penalty
parameter of the error term. Training vectors xi are mapped into a higher dimensional space
by the function φ. In this higher dimensional space, SVM finds a separating hyper-plane that
maximizes the margin. The system uses a radial basis function (RBF) kernel:

K(xi, xj) ≡ φ(xi)Tφ(xj) = exp(−γ‖xi − xj‖2), γ > 0 (4.6)

Although, different kernels exist, we choose RBF because it handles non-linear relations
between attributes and target values, unlike linear kernel. RBF also has less hyper param-
eters and less numerical difficulties than polynomial or sigmoid kernels. Finally, two pa-
rameters must be identified C and γ. As proposed by [22], we use a grid to test various
parameters values, for each dataset.

4.3.3.3 Finite state machine

A finite state machine is used to organize and prioritize the six states [19] [152].

The main advantage of FSM is that it is really flexible and allows adding or removing
states. However, when adding a new state, state transitions must be added with caution.

The state machine we use is synchronous and deterministic. Synchronous means that the
machine iterates over each new frame. Based on the previous state, the system calculates the
new one by testing each transition condition. If a condition is satisfied, the system moves to
the new state. Otherwise, the system stays in the same state. The machine is deterministic
because for each state, there can not be more than one transition for each possible input.
One FSM model the behavior of one person. We save the person’s path through its FSM for
higher level purposes. Figure 4.4 shows a possible path through the FSM.
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Figure 4.4: Diagram representing a path through the FSM. All transitions are not written to make
it clear. We note that “&&” is a logic “AND” and “!” corresponds to “NOT”

4.4 Evaluation

4.4.1 Dataset description

We use various videos taken with the same camera, with 15 frames per second. Videos are
grouped in datasets. Some are shot in our laboratory (LAB 1, LAB 2, and LAB 3). The others
are taken in a shopping mall (MALL 1 and MALL 2).

The two first datasets (LAB 1 and MALL 1) possess five and six sequences respectively
and contains a lot of interactions with products. Two and four different people are shopping
respectively, see figure 4.5. However, there is only one person interacting with products
at a time. Products taken by people have different shapes, colors, and sizes in the video
sequences. Furthermore, all products are identical in the heaps.

LAB 2 presents actors that are not simultaneously in the scene and that are not interacting
with products. Customers are just walking around the scene, see figure 4.6.

LAB 3 and MALL 2 are two datasets where multiple people interact together. Two to
four people interact simultaneously in the scene, see figure 4.5.

4.4.2 Deterministic detection of the “Interact” state

In this section, we detect the “Interact” state when a person covers a product area with a
surface area larger than a hand or when a person is next to a product area in which motion
is detected.
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(a) LAB 1 video 1 (b) LAB 3 video 2 (c) LAB 3 video 4

(d) MALL 1 video 4 (e) MALL 2 video 4 (f) MALL 2 video 5

Figure 4.5: Screenshots of various datasets

(a) frame 2 (b) frame 51 (c) frame 65 (d) frame 84 (e) frame 101

Figure 4.6: Screenshots of LAB 2 video 3

4.4.2.1 Comparison of both measurements

The result for the detection of motion in a product area is not very precise, see figure 4.8,
4.9, and 4.11. In fact, it is difficult to detect major changes when a product is taken from
a heap of identical products, especially when the objects are small as in the LAB datasets.
Furthermore, false negatives occur when the person occludes the taken object. However, it
does not affect the results because the detected product merges with the person and then
increases the occluding surface on the product area.

Customers covering a product area offers much better results, see figure 4.8, 4.9, and 4.11.
However, false positives can occur due to shadows or when a person covers several interest
areas at the same time. In such a case, the most occluded area is selected.
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When these two measurements are combined, they offer a good interpretation of a pick-
ing up behavior in a specific area. Figure 4.11 gives correct results in a complex scene with
multiple and simultaneous interactions.

Figure 4.7: Screenshots of LAB 1 video 1, on the top, and LAB 1 video 2, at the bottom

Figure 4.8: Diagrams representing motion detected in the corresponding product area, on the
left, and an object covering a product area, on the right. The tested video is LAB 1 video 1, see
figure 4.7

4.4.2.2 Recall - precision on datasets

We further calculate the recall and precision for the “Interact” state on several datasets, see
figure 4.12. We note that the MALL datasets offer better results than LAB datasets because
the camera is closer to the products. Therefore, products appear larger in the video.

We also note that the datasets with several customers interacting simultaneously offer re-
sults as good as datasets with only one person interacting at a time. Therefore, our determin-
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Figure 4.9: Diagrams representing motion detected in the corresponding product area, on the
left, and an object covering a product area, on the right. The tested video is LAB 1 video 2, see
figure 4.7

(a) frame 14 (b) frame 19 (c) frame 22

(d) frame 37 (e) frame 41 (f) frame 45

Figure 4.10: Screenshots of a video sequence with two customers interacting simultaneously

istic detection of the “Interact” state is robust to multiple people interacting simultaneously
in the scene.
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Figure 4.11: Diagrams representing motion detected in the corresponding product area, on the
left, and an object covering a product area, on the right. The tests are achieved on the video
presented on figure 4.10

Figure 4.12: Precision - recall table for the deterministic detection of the “Interact” state on vari-
ous datasets
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4.4.2.3 Varying hand size

Finally, we test this method with varying hand sizes, see figure 4.13. We already note that
MALL dataset offers better results than LAB.

The hand size is larger on MALL than LAB, due to the camera location. Moreover, the
variation of the hand size has less effect on MALL 1 dataset than on LAB 1 dataset. Recall
increases with the hand size and precision tends to decrease.

Figure 4.13: Recall - precision graph for the “Interact” state for the dataset LAB 1, on the left, and
MALL 1, on the right. Hand size varies from 10% to 500%, on the left, and from 50% to 150%, on
the right.

4.4.3 States detection

This section presents recognition results for every state, see figure 4.14. We detect the state of
each object, at each frame, and then compare this state to the ground truth. We then calculate
the percentage of correctly labeled frames for three datasets.

We note that even though “Interact” state is better detected on MALL datasets, the overall
results of states detection results are better for LAB datasets. In fact, the other states are often
not well detected on MALL datasets due to the camera location that does not allows to see
people entirely in the scene. For example, a person can be detected as “Exiting” the scene
because he is connected to an image boundary, while he is just walking around. As we see on
figure 4.5, a person is looking interested in products and is connected to an image boundary,
at the same time.

We further note that LAB 2 offers better results than LAB 1. Since LAB 2 is composed
of simple actions, we can see that “Stand by”, “Entering”, and “Exiting” states are easier to
detect than “Interact” for the LAB datasets.

123



CHAPTER 4. HUMAN ACTIVITY ANALYSIS

Figure 4.14: Percentage of correctly labeled state for various dataset

4.4.4 Probabilistic recognition of the “Interact” state

In order to recognize the “Interact” state, we use a cross validation process. In other words,
to recognize events on a video, we use all the other sequences of the dataset as training and
then calculate recall and precision on the detection of the state, see figure 4.15 and 4.16. It
is interesting to note that using this process, we only use a few minutes of video as training
with a few actors.

Figure 4.15: Recall - precision table for the “Interact” state using various descriptors on two
datasets
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Figure 4.16: Recall - precision table for the “Interact” state using the two descriptors offering the
best results, on multiple people datasets

4.4.4.1 Motion history image

MHI is tested on LAB 1 and MALL 1 datasets, see figure 4.15. MHI offers poor results,
especially on LAB 1 sequences. In fact, the silhouette of a person does not present significant
changes when a person picks up products in this dataset, due to the camera location.

MALL 1 offers better results due to the camera location that allows seeing a major dif-
ference on the silhouette of a person picking up products. However, we realize that the
appearance of the customer is not necessarily preserved from one sequence to another. This
phenomenon is due to the fact that some videos show customers with shopping cart or bas-
ket, detected as foreground.

4.4.4.2 Accumulated motion image

AMI is tested on LAB 1 and MALL 1 datasets, see figure 4.15, and offers much better results
than MHI for LAB sequences. AMI better model the changes occurring when a person picks
up a product with such a camera configuration.

AMI give similar results as MHI for MALL 1. AMI is also sensitive to the appearance
changing of the customer, within the dataset sequences.

4.4.4.3 Local motion context

LMC is also tested on MALL 1 and LAB 1, see figure 4.15, and offers much better results for
both datasets.

The quantized optical flow combined with the silhouette and temporal context presents
a more accurate description that better model a person’s motion while picking up a product.
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Once again, we note that results on MALL 1 are better than LAB 1. The camera configu-
ration allows us to see the customer from closer and with a better angle, see figure 4.5.

4.4.4.4 Interaction context

IC offers even better results than LMC on all datasets, see figure 4.15. We note that MALL
datasets performs slightly better than LAB datasets. The difference is much smaller than the
difference with the other methods.

We then compare results on multiple people datasets, see figure 4.16. Results are as good
as on previous datasets. The IC descriptor is robust to multiple people interacting together.

4.4.4.5 Combined local motion context and interaction context

We then decide to combine the two descriptors offering the best results to test several datasets,
see figure 4.15 and 4.16.

We compare result using only the IC descriptor and combined LMC and IC (MI) descrip-
tor. MI performs as good as IC for precision, but offers better results for recall on the first
datasets.

On multiple people datasets, MI performs slightly better than IC on average. In fact,
LMC description tends to be noisier, due to occlusions. IC remains robust in these situations
and the recognition rates in multiple people datasets are as good as in the first datasets.

4.4.5 Camera location

The camera position is an important factor for the overall quality of the system. The case
we study is simple: taking object on a table. Thus, our choice of camera position is flexible.
Knowing that the application will be used for different kinds of racks, we want to optimize
this position. The basic question to solve is: “What do we observe?” “The customers or
the products?”. Although our most relevant observations come from the products, the cus-
tomers offer a lot of meaningful information.

Various tests are made, with various camera locations. We note that when people or
products are seen from a closer view point, the results are improved due to the resolution
increase. It is also important to see the entire customer while he is picking up products. If a
person is not fully in the image, the detection of “Stand by”, “Enter”, and “Exit” states are
noisier.

For example, MALL performs better than LAB on recall and precision for the Interact
state due to the position of the camera, located directly above the products and closer on
MALL than on LAB, see figure 4.5. Thus, a position close to the products performs better

126



on Interact state recognition. However, having the camera too close to the products make us
lose information about the customers, since they are only detected when they are near the
products.

Another major point is that when people cover large areas of the image, the field of view
is reduced and the noises generated by the camera become more significant. Auto-focus
generates blurs; auto-white-balance and auto-iris generate light changes. In fact, when an
object that significantly changes the image contrast appears, pixels values of the entire image
are modified, by these camera functions. It is important to fix these functions or to effectively
compensate them.

4.5 Conclusions

In this chapter, we present the behavior analysis phase of our system. We first define a be-
havior model composed of six states. These six states are organized in a finite state machine
that models the behavior of each tracked object in the scene.

Then, we focus on the Interact state that model interaction between customers and prod-
ucts of the point of sale. This state corresponds to a product grabbing event and is detected
using various methods. First we detect interaction using a deterministic method. Then, we
build various descriptors: MHI, AMI, LMC, IC, and MI. These descriptors are used to detect
the “Interact” state with SVMs.

The evaluation shows us that the deterministic method offers good results for a final
system that would not use a training phase. Then, probabilistic methods offer promising
results by combining LMC and IC descriptors. We note that we do not require a long training
to obtain good results with this method.
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Chapter 5

Interpretation and scenario
recognition

5.1 Introduction

This chapter presents two high-level analysis processes. These processes are based on the
behavior analysis module, presented in chapter 4, that detects the state of action of each
person in the scene along the sequence, see figure 4.1.

First, a semantic interpretation is generated that describes the actions achieved by the
actors in the video. Specifically, sentences are generated when state changes occur. This
interpretation produces semantic information that is suitable for non-specialist.

Then, we recognize three different scenarios that summarize the actions of each actor, in
a video sequence. Such information is useful for statistical analysis about the number and
interest of customers in specific areas. Moreover, these statistics can be used as a measure
for media content efficiency.

5.2 State of the art

Semantic description of behavior aims at generating sentences in natural language to de-
scribe actions taking place in a video. Many applications require a description of object
behavior in natural language, suitable for non-specialist operator [82].

There are two main categories of behavior description methods: statistical models and
formalized reasoning.
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5.2.1 Statistical models

Bayesian network model is a representative statistical method [55] [120]. This model inter-
prets events and behaviors by analyzing time sequences and statistical modeling. [119] uses
a two-layer agent-based Bayesian network to describe interactions between several objects.
However, these methods use motion concepts based on low-level recognition. In order to use
high-level concepts, such as events or scenarios, these methods require high-level reasoning
based on a large amount of prior knowledge.

5.2.2 Formalized reasoning

These methods require symbol systems, which represent behavior patterns, and reasoning
methods, such as prediction logic, to recognize and classify events [99]. [71] and [70] pro-
pose to generate natural language descriptions of human behaviors in videos. First, head
region of a human is detected in each frame. The 3-D pose and position of the head are
estimated using a model-based approach. Then, head trajectory is divided into segments of
monotonous motion. For each segment, the degree of change of pose and position and the
relative position to other objects are calculated. Meanwhile, verbs and syntactic elements are
matched to the object behaviors and text is generated using a machine translation technique.

[74] presents a method that uses fuzzy membership functions. These functions associate
verbs with quantitative measurements obtained by analyzing the image sequence. In this
method, each occurrence is defined by three predicates: precondition, monotonicity condi-
tion, and post-condition.

The main disadvantage of formalized reasoning is that it does not handle uncertainty of
events [81].

Description of behavior presents several issues: how to represent semantic concepts, how
to map motion characteristics to semantic concepts, how to choose a good representation to
interpret the meaning of the scene.

5.3 Semantic interpretation

This section aims at describing people’s behavior in natural language. Since the behavior
analysis system detects the current state of action of a person, we want to generate sentences
that summarize the actions and events achieved by each person in a video.

It is interesting to note that there is a semantic gap between video analysis information
and conceptual information described in natural language.

In our approach each state, detected in the behavior analysis phase, corresponds to a
concept of human action. We use case frames to express these actions. Case frames consist
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of syntactic components of a sentence. Then, we build a state transition model based on
a hierarchy of actions. Such a model allows dynamic state changes and the generation of
sentences along a video sequence.

5.3.1 Case frames

A case frame is a frame expression that represents relationships between cases in a sentence.
Fillmore [37] classifies cases into eight categories: agent, locus, source, predicate, etc. In our
study, we use simple case frames composed of three categories as illustrated in the following
example:

[AG: “Person 1”, PRED: “is interested in”, LOC: “area 2”]

Where AG, PRED and LOC are the agent, the predicate, and the locus of the described
action, respectively. These three cases allow us to describe all the actions we are interested
in.

5.3.2 Hierarchy of action

Sentences are built using a hierarchy of actions (HoA). In a HoA, each node is represented
by a case frame.

Figure 5.1 presents an example of hierarchy of action. In this example, a parent node
[PRED: be, LOC: 0, . . . ] derives two child-nodes.

• One node is the redefinition of the verb: verb “is interested in” is derived from verb
“be”, when the measurement Interested is detected.

• The second node is the redefinition of the locus. The locus “in the scene” is derived
from “0”, when the measurement Fully in is detected. Information about the location
of the action is added to the locus.

Figure 5.1: Example of hierarchy of action

In particular, by going through the hierarchy of action, the case frame is refined until a
final node is reached. Final nodes do not have children and contains all the components of
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the sentence we are looking for, see figure 5.2. The final nodes predicates of our HoA are
listed as follow:

• “is walking around”

• “is stopped”

• “enters the scene”

• “exits the scene”

• “is interested in”

• “interacts with”

• “is gone”

Figure 5.2: Sample of the hierarchy of action

However, to follow rapidly changing states and save processing time, we use a different
model: a state transition diagram [71].

5.3.3 State transition diagram

We generate states for each type of verb and each locus and construct a State Transition
Diagram (STD). As most of the analysis is completed in the previous phase, with the FSM,
the STD is simplified, see figure 5.3. The STD has 11 states with no children that correspond
to the 11 possible sentences that can be printed.

We explain, in the algorithm that follows, how case frames are generated from the STD.
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Figure 5.3: State transition diagram for three areas of interest, or product areas

1 Let s be a current state. For a new position of the tracked person, semantic primitives
are evaluated downward from the top of the STD to determine the new state s’.

2 If state s and state s’ are identical, no case frame is generated.

3 Otherwise, a case frame associated to the new state s’ is generated.

Specifically, when a state change occurs, a case frame is generated and a sentence is
printed.

It is interesting to note that we print sentences using present tense or progressive form,
because the sentence is usually printed at the beginning of an action that last for several
frames.

5.3.4 Filtering results

After generating sentences at every state change, we notice that the amount of information
is too large. Furthermore, when a state change is detected for only one frame, meaningless
sentences are generated. Therefore, we filter sentences by checking that the person remains
in the same state for a couple of frames, to print meaningful sentences. We avoid writing
two sentences when a person state is stationary and switches for one frame to another state
before returning to the original state, for example.

We further filter out small objects or objects detected for a few frame. These objects often
correspond to noises detected when a person enters the scene, for example.

5.3.5 Evaluation

Semantic interpretation produces interesting results, see figure 5.9, 5.10, 5.11, 5.12, 5.13, 5.14,
and 5.15.
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Since this interpretation relies completely on the state recognition, a few errors occur. In
particular, videos from MALL datasets generate errors due to miss-detections of the “Exit”
state. In fact, the camera is very close by the product and when a person is standing by
the products, this person is usually connected to an image boundary. Then “Exit” state is
detected instead of “Stand by”, see figure 5.13 frame 34 and figure 5.14 frame 39.

Moreover, the filtering of small object results in the non-detection of the “Enter” state.
Since an object entering the scene is not fully detected, the object is filtered out because it is
too small, see figure 5.10, 5.11, 5.13, 5.14, and 5.15.

5.4 Scenario recognition

Chapter 4 identifies the state of tracked objects at every frame of the video. These states
correspond to actions achieved by the tracked people. In this section, we aim at defining
and recognizing specific high-level scenarios. These scenarios correspond to a series of ac-
tions and summarize the achievement of a customer in the scene. Specifically, we want to
differentiate people passing by from people interested or interacting with products.

For our application, it is interesting to detect various scenarios that describe different cus-
tomer behaviors. Depending on the scenario occurring, the media communicates differently
with the customers.

We build a temporal structure that represents a series of human actions. This model,
which detects the occurrence of actions, is described using a constraint network based on
Allen’s theory. Constraints are imposed by the video analysis measurements and the pre-
vious state of the network. A network is built to describe each scenario. By checking the
validity of each network we determine the scenario played by the customer.

5.4.1 Temporal relationships definition

As we see in chapter 4, the FSM is a method that allows determining the current state of
action of a person based on its previous state and on the video analysis measurements. Thus,
we use Allen’s theory that allows us to define more complex scenarios with extra temporal
relationships between states.

Allen’s interval algebra [6] defines 13 relationships between two time intervals: equal (e),
before (b), meet (m), overlap (o), during (d), start (s), finish ( f ), and the inverses relations, ib,
im, io, id, is, i f , see figure 5.4. We use these relationships as a base to describe the scenarios.
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Figure 5.4: The 13 time relationships between two time intervals [6]

5.4.2 Scenarios description

We use “Interval algebra constraint network” [5], or “IA-network” [77] [111], to represent
temporal structure. The network variables are time intervals and arcs, which are binary
temporal constraints between intervals.

In our approach, we use the states of the FSM as the time intervals. In fact, each detected
state of the FSM is an event that last for a certain interval of time. However, we can not
use all the possibilities of Allen’s theory, because all the states are mutually independent in
the deterministic FSM. Therefore we use only four relations, as temporal constraints: before,
meet, and their inverse ibefore and imeet.

Using these relations, we build three different constraint networks that represent the
following scenarios:

1 Person walking by

2 Person walking by and being close to a products

3 Person walking by and interacting with products

The corresponding networks are shown in figures 5.5, 5.6, and 5.7. m and b on the transi-
tions represent the relations meet and before, im and ib are the inverse relations respectively.
We note that A meet B means that the event B starts as soon as event A finishes.

The first scenario is simple and can be thought of as a sequence of states: Enter - Stand
by - Exit - Inactive.
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As we can see on figure 5.5 the relationship between “Enter” and “Inactive” are meet and
before, meaning that “Enter” meets “Inactive” or “Enter” occurs before “Inactive”. These
relationships are the only ones that are authorized between the two states, for this network.

Figure 5.5: Scenario 1 constraint network

Figure 5.6: Scenario 2 constraint network

5.4.3 Scenario recognition

This section presents how the three scenarios are recognized. For each tracked person, we
build the three networks. As a person passes from one state to another in the FSM, we check
the validity of each transition in the networks. As soon as two scenarios are no longer valid,
the system prints a sentence suggesting that the person plays the only valid scenario. Once
the person leaves the scene, or is “Inactive”, we check the validity of each scenario. Then the
system prints the more likely scenario that was achieved by the tracked person, as well as its
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Figure 5.7: Scenario 3 constraint network

validity score. This score relates the number of valid transitions divided by the total number
of transitions.

5.4.4 filtering results

As in section 5.3, we filter the results to make them clear and meaningful. The system does
not print information regarding small objects and objects that are tracked on a few frames.
These objects are likely to correspond to noises.

5.4.5 Evaluation

Scenario recognition offers very good results. For every video of the datasets MALL 1, LAB
1, LAB 2, MALL 2, and LAB 3, the scenarios played by the tracked objects are correctly
identified, even if states are not perfectly recognized. However, a few sequences are not
properly modeled. In fact, we see in chapter 3 that the tracking process can generate errors
when a person leaves the scene while another one enter. Even if the scenario is correctly
recognized, the identity of the two persons is interchanged. Furthermore, when several
customers are occluding each other, the tracking process can not separate them during the
occlusions. Thus, only one tracked object’s scenario is identified, see figure 5.15.

Figure 5.8 shows the percentage of correct state transitions for all datasets. We note that
MALL datasets offers slightly worse results. We note the same phenomenon for multiple
person datasets.

We detect the scenarios in two different ways. First we detect scenarios on-line, and
suggest a scenario as soon as the two others are invalid. It is interesting to note that this
phase does not always offer perfect results, see figure 5.11, 5.12, 5.13, and 5.14. The second
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method checks the entire path, once the person leaves the scene, and look for the closest
scenario. This second process offers correct results for every video tested, see figure 5.9,
5.10, 5.11, 5.12, 5.13, 5.14, and 5.15.

Figure 5.8: Table representing the validity scores for various videos

5.5 Conclusions

This chapter presents two high-level analysis processes. First, a semantic interpretation is
generated that describes the actions achieved by the actors in the video. Then, we recognize
three different scenarios that summarize the actions of each actor. Both processes are based
on the behavior analysis module, presented in chapter 4, that detects the state of action of
each person in the scene.

The semantic interpretation is based on these states and generates sentences when state
changes occur. This interpretation produces semantic information that is suitable for non-
specialist. Furthermore, the interpretation offers good results that are directly depending on
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the state detected in the behavior analysis phase. We note that the interpretation filters the
states to improve the results.

The scenario recognition generates a summary of a video, by detecting each person and
categorizing its behavior. Such information is useful for statistical analysis about the num-
ber and interest of customers in specific areas. Moreover, these statistics can be used as a
measure for media content efficiency. The scenario recognition offers very good results since
all tracked object are correctly labeled. However, a few objects are not properly identified
due to the object tracking system limitations.

We finally note that the full system can analyse 6 to 10 frames per seconds, for an image
resolution of 704X576 or 640x480, respectively.
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(a) frame 31 (b) frame 92

(c) frame 114 (d) frame 414

Figure 5.9: Semantic interpretation and scenario recognition results for LAB 1 video 1
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(a) frame 51 (b) frame 65 (c) frame 101

Figure 5.10: Results for LAB 2 video 3
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(a) frame 44 (b) frame 64 (c) frame 96

(d) frame 118 (e) frame 184

Figure 5.11: Results for LAB 3 video 2
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(a) frame 14 (b) frame 19 (c) frame 22

(d) frame 37 (e) frame 41 (f) frame 45

Figure 5.12: Results for a video sequence with two people interacting simultaneously
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(a) frame 38 (b) frame 70

(c) frame 149 (d) frame 204

Figure 5.13: Results for MALL 1 video 6
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(a) frame 60 (b) frame 74 (c) frame 111

(d) frame 129 (e) frame 147

Figure 5.14: Results for MALL 2 video 1
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(a) frame 45 (b) frame 58 (c) frame 97

Figure 5.15: Results for MALL 2 video 4
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Chapter 6

Conclusions and perspectives

This thesis presents our work achieved in various areas of computer vision. Our goal is to
build a real-time system analyzing human behavior in a shopping setting. The system is
composed of various modules on different level.

The low-level layer is composed of motion detection and object tracking that are pre-
sented in chapter 2 and chapter 3, respectively. The mid-level layer is the human activity
analysis phase, see chapter 4. Finally, the high-level layer is composed of two separated
processes: semantic interpretation and scenario recognition presented in chapter 5.

6.1 Motion detection

The chapter 2, about motion detection, presents and evaluates several methods.

First, we present frame differencing, a techniques without background model, which is
very fast. However, detection results are poor.

Then temporal averaging, which uses a background model, remains fast and offers much
better results. However there are several limitations due to camera motion and lighting
changes.

To solve these issues, we test approaches using a multi-modal model of the background,
such as Bayes decision rules (BDR) classification [80], Gaussian mixture model [136], and
our method: improved Gaussian mixture model (iGMM).

iGMM and BDR offer accurate results and handle camera motion, light changes, shad-
ows, and stopped objects. However, iGMM is about 5 times faster than BDR.

Motion detection techniques have been studied intensively for more than 10 years now
and many methods were presented. However, there are still some interesting methods from
data analysis that are adapted to the context of motion detection. For example, global model
of the background are built using principal component analysis [149].
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6.2 Object tracking

The chapter 3 presents and compares various object tracking approaches.

First we present four existing algorithms based on connected components, mean-shift,
particle filtering, and combined connected component and particle filtering.

Then, we present our system based on multiple hypothesis that achieve tracking using
multiple level analysis.

After evaluating the 5 methods, we conclude that our system can track several rigid or
non-rigid objects, is able to track objects in outdoor and complex scenes, and is robust to
several types of occlusions.

Since our method is based on the motion detection technique presented in chapter 2,
the advantages and limitations of the tracking are linked to the motion detection technique
used. The advantage is that motion detection offers very accurate detection of the object
contour and the main limitation is that occluding objects are merged together and are not
distinguishable.

As motion detection, object tracking has been studied intensively already. Most of the
existing systems are adapted to specific cases and proposing an outstanding method cop-
ing with various types of scene is a tough challenge. Mixing existing methods can be an
interesting work to improve genericity and precision.

6.3 Human activity analysis

The chapter 4 presents the behavior analysis phase of our system. We first define a behavior
model composed of six states. These six states are organized in a finite state machine that
models the behavior of each tracked object in the scene.

Then, we focus on the Interact state that model interaction between customers and prod-
ucts of the point of sale. This state corresponds to a product grabbing event and is detected
using various methods. First we detect interactions using a deterministic method. Then,
we build various descriptors: motion history image, accumulated motion image, local mo-
tion context, interaction context, and combined local motion context and interaction context.
These descriptors are used to detect the “Interact” state with SVMs.

The evaluation shows us that the deterministic method offers good results for a final
system that would not use a training phase. Then, the probabilistic method offering the best
results is the combination of LMC and IC descriptors. We note that we do not require a long
training to obtain good results with this method.

Human behavior analysis is a younger field of research and there are many open issues
remaining. Several contests are being held to enable the detection of more complex actions.

148
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For example, the conference CVPR 2011 [3] proposes a challenge where the goal is to recog-
nize behavior such as “people getting in a vehicle”, “people loading or unloading a vehicle”,
etc. Other contests aim at detecting or retrieving actions in movies [133] [78].

6.4 Interpretation and scenario recognition

The last chapter presents two high-level analysis processes. First, a semantic interpretation is
generated that describes the actions achieved by the actors in the video. Then, we recognize
three different scenarios that summarize the actions of each actor. Both processes are based
on the behavior analysis module, presented in chapter 4, that detects the state of action of
each person in the scene.

The semantic interpretation is based on these states and generates sentences when state
changes occur. This interpretation produces semantic information that is suitable for non-
specialist. The precision of the results directly depends on the state detected in the behavior
analysis phase.

The scenario recognition generates a summary of a video, by categorizing the behavior
of each detected person. The scenario recognition offers very good results since all tracked
object are correctly labeled. However, a few objects are not properly identified due to the
object tracking system limitations.

These two high-level processes are strongly linked to our behavior analysis system. Se-
mantic interpretation of behavior and scenario recognition are sub-parts of behavior anal-
ysis. Nowadays, semantic analysis is studied in various contexts: scene analysis, image
retrieval, etc.

6.5 Project perspectives

Concerning the project, there are several possibilities of improvement.

A first step would be to perform tests on a bigger scale: set up the system to work all day
long for several days in a raw and in various locations. To set up such a system, there are
many decisions to be taken concerning the content of the digital media. There are several
possible scenarios: playing a specific video linked to a specific product when a person inter-
act with it, play various videos and analyze their impact on customer, etc. Realizing such
test would definitely present new issues or axes of improvements.

Improvement could be achieved on the motion detection level by parallelizing the mo-
tion detection process. Updating the background and testing if pixels belong or not to the
background are two process that are performed on pixels independently. Therefore, these
two processes can be parallelized.
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The tracking system could be further tested by modifying the regions descriptors. We
can imagine using a Kalman filter to predict the next position of the image gravity centre for
example. We could also build a color histogram and add it to the region descriptor.

Other behaviors could be recognized. Further methods can be implemented to analyze
object trajectories, for example. Concerning the “Interact” state recognition, various descrip-
tors based on local features have been recently tested for action recognition in movies and
could be tested for our application. Detecting and matching feature points in a local tempo-
ral context and describing their displacements can be an interesting descriptor, for example.

More complex scenarios could be described, such as counting the number of products
picked up, or detecting people interacting together.
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Conclusions et perspectives

Cette thèse présente notre travail réalisé dans plusieurs champs de la vision par ordinateur.
Le but est de créer un système qui analyse les comportements humains dans un point de
vente en temps réel. Ce système est composé de divers modules sur trois niveaux.

La couche de bas niveau est composée de la détection de mouvement et du suivi d’objet,
présentés dans le chapitre 2 et 3. La couche de niveau moyen analyse les activités humaines,
voir chapitre 4. Finalement, la couche de haut-niveau est composée de deux procédés sé-
parés: l’analyse sémantique et la reconnaissance de scénarios, voir chapitre 5.

Détection de mouvement

Le chapitre 2 présente et évalue plusieurs méthodes de détection de mouvement.

D’abord, nous présentons la différence inter-image, une technique sans modèle de l’arrière-
plan, qui est très rapide. Cependant, les résultats sont de mauvaise qualité.

Puis, la moyenne temporelle, qui utilise un modèle de l’arrière-plan, offre de biens meilleurs
résultats tout en restant rapide. Cependant, les mouvements de caméras et les changements
de luminosité limitent cette méthode.

Afin de résoudre ces problèmes, nous testons des approches utilisant des modèles multi-
modaux de l’arrière-plan, tels que la classification par règles de décision Bayesienne (BDR)
[80], le modèle de mélange de mixture Gaussienne [136], et notre méthode: le modèle de
mixture Gaussienne amélioré (iGMM).

iGMM et BDR offrent des résultats très précis et sont robustes aux mouvements de
caméras, changements de luminosité, ombres, et objets arrêtés dans la scène. Cependant,
iGMM est environ 5 fois plus rapide que BDR.

La détection de mouvement a été largement étudiée depuis plus d’une dizaine d’année
et beaucoup de méthodes ont été proposées. Cependant, il existe toujours des méthodes
d’analyse de données pouvant être adaptées à la détection de mouvement. Par exemple, des
modèles globaux de l’arrière-plan sont créés avec des analyses en composante principale
[149].
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Suivi d’objets

Le chapitre 3 présente et compare plusieurs approches pour le suivi d’objets.

D’abord, nous présentons quatre algorithmes existants basés sur les composants connec-
tés, mean-shift, les filtres à particules, et les composants connectés combinés avec des filtres
à particules.

Puis, nous proposons un sytème basé sur plusieurs hypothèses, qui suit des objets sur
plusieurs niveaux d’analyse.

Après avoir évalué les cinq méthodes, nous concluons que notre système peut suivre des
objets rigides et non-rigides, suivre des objets dans des scènes extérieures et complexes et
peut gérer divers types d’occultations.

Etant donné que notre méthode est basée sur la détection de mouvement présentée dans
le chapitre 2, les avantages et limites du suivi sont liés à la technique de détection. L’avantage
est que la détection offre des résultats très précis pour le contour des objets et la limite
générale est que les objets s’occultant les uns les autres sont fusionnés et sont indistinguables.

Tout comme la détection de mouvement, le suivi d’objet a été largement étudié. La plu-
part des systèmes sont adaptés à des cas spécifiques et peu d’entre eux peuvent faire face à
des types de scènes très différent. Combiner des méthodes ensemble peut être intéressant
pour améliorer la généricité et la précision.

Analyse d’activité humaine

Le chapitre 4 présente la phase d’analyse de comportement du système. D’abord, un mod-
èle est défini, basé sur six états. Ces six états sont organisés dans une machine à état, qui
modélise le comportement de chaque objet suivi dans la scène.

Puis, nous nous focalisons sur l’état “Interact”, qui détecte les interactions entre les clients
et les produits du point de vente. Cet état correspond à un évènement représentant la prise
d’un produit et peut être détecté de diverses manières. D’abord, nous détectons l’interaction
de manière déterministe. Puis, nous créons plusieurs descripteurs: Image d’historique du
mouvement, Image de mouvement accumulé, contexte de mouvement local (LMC), con-
texte d’interaction (IC) et la combinaison du contexte d’interaction et du contexte de mouve-
ment local. Ces descripteurs sont utilisés pour détecter l’état “Interact” avec des machines à
vecteurs de support.

L’évaluation montre que la méthode déterministe offre de bons résultats pour un sys-
tème sans phase d’apprentissage. Puis, la méthode probabiliste offre les meilleurs résultats
avec la combinaison des descripteurs LMC et IC. On remarque, que l’on utilise une phase
d’apprentissage très courte pour obtenir ces bons résultats.
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6.5. PROJECT PERSPECTIVES

L’analyse de comportement humain est un champ de recherche plus jeune et offre en-
core beaucoup de problèmes à résoudre. Il existe notamment des challenges ayant pour but
de détecter des actions de plus en plus complexes. Par exemple, la conférence CVPR 2011
[3] propose un challenge dont le but est de reconnaitre des comportements tels que “per-
sonne entrant/sortant d’un véhicule”, “personne chargeant/déchargeant un véhicule”, etc.
D’autre chalenge existent pour détecter des actions dans des films [133] [78].

Interprétation et reconnaissance de scénario

Le dernier chapitre présente deux procédés de haut niveau. D’abord, une interprétation
sémantique est générée décrivant les actions réalisées par les acteurs dans la vidéo. Puis
trois scenarios résumant les actions de chaque acteur sont reconnus. Ces deux traitements
sont basés sur le module d’analyse de comportement qui détecte l’état d’action de chaque
personne en chaque instant.

L’interprétation sémantique est basée sur ces états et génère des phrases lorsqu’un change-
ment d’état est noté. Cette interprétation produit des informations sémantiques utilisables
par des non-spécialistes. Les résultats dépendent directement de la phase de détection des
états.

La reconnaissance de scenario génère un résumé de la vidéo en catégorisant le comporte-
ment de chaque personne détectée. La reconnaissance de scénario offre de très bons résultats
tant que les objets sont correctement identifiés. Cependant, certains objets peuvent êtres mal
identifiés lorsque l’on atteint les limites du système de suivi.

Ces deux procédés de haut niveau sont fortement liés à l’analyse de comportement. De
nos jours, l’analyse sémantique est étudiée dans divers contextes: l’analyse de scène, la
récupération d’image, etc.

Perspectives du projet

En ce qui concerne le projet, il y a plusieurs axes d’amélioration.

Une première étape consisterait à faire des tests à plus grande échelle: faire marcher le
système pendant plusieurs jours consécutifs dans plusieurs endroits. Un tel prototype néces-
site de prendre plusieurs décisions concernant le contenu à diffuser sur les écrans. Plusieurs
scénarios sont possibles: diffuser une vidéo liée à un produit lorsqu’une personne inter-
agit avec ce produit, diffuser plusieurs vidéos et analyser leur impact sur l’interaction avec
les produits. De tels tests montreraient probablement des nouvelles difficultés et des axes
d’améliorations.
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Des améliorations sont possibles sur la détection de mouvement en parallélisant le procédé
de détection de mouvement.

Le suivi d’objets peut être testé en modifiant les descripteurs. On peut utiliser un filtre de
Kalman pour prédire la position suivante du centre de gravité de chaque objet, par exemple.
Un histogramme de couleur peut être aussi utilisé comme descripteur.

D’autres comportements pourraient être reconnus. Des méthodes analysant la trajectoire
des objets peuvent être implémentées. Concernant l’état “Interact”, des descripteurs basés
sur des “local features” ont été récemment testés pour détecter des actions dans des films et
pourraient offrir de bons résultats pour notre application.

Des scenarios plus complexes pourraient être décrit afin d’estimer le nombre de produit
pris ou détecter les personnes interagissant ensemble.
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